Geometric Bijections Between Spanning Trees and Break Divisors

Combinatorics Seminar
Tuesday, April 7, 2015 - 12:05pm
1 hour (actually 50 minutes)
Skiles 005
Georgia Tech
The Jacobian group Jac(G) of a finite graph G is a group whose cardinality is the number of spanning trees of G. G also has a tropical Jacobian which has the structure of a real torus; using the notion of break divisors, one can obtain a polyhedral decomposition of the tropical Jacobian where vertices and cells correspond to the elements of Jac(G) and the spanning trees of G respectively. In this talk I will give a combinatorial description to bijections coming from this geometric setting, I will also show some previously known bijections can be related to these geometric bijections. This is joint work with Matthew Baker.