Seminars and Colloquia Schedule

Monday, August 19, 2019 - 13:50 , Location: Skiles 005 , Chuntian Wang , The University of Alabama , , Organizer: Martin Short

Residential crime is one of the toughest issues in modern society. A quantitative, informative, and applicable model of criminal behavior is needed to assist law enforcement. We have made progress to the pioneering statistical agent-based model of residential burglary (Short et al., Math. Models Methods Appl., 2008) in two ways. (1) In one space dimension, we assume that the movement patterns of the criminals involve truncated Lévy distributions for the jump length, other than classical random walks (Short et al., Math. Models Methods Appl., 2008) or Lévy flights without truncation (Chaturapruek et al., SIAM J. Appl. Math, 2013). This is the first time that truncated Lévy flights have been applied in crime modeling. Furthermore (2), in two space dimensions, we used the Poisson clocks to govern the time steps of the evolution of the model, rather than a discrete time Markov chain with deterministic time increments used in the previous works. Poisson clocks are particularly suitable to model the times at which arrivals enter a system. Introduction of the Poisson clock not only produces similar simulation output, but also brings in theoretically the mathematical framework of the Markov pure jump processes, e.g., a martingale approach. The martingale formula leads to a continuum equation that coincides with a well-known mean-field continuum limit. Moreover, the martingale formulation together with statistics quantifying the relevant pattern formation leads to a theoretical explanation of the finite size effects. Our conjecture is supported by numerical simulations.

Wednesday, August 21, 2019 - 11:00 , Location: Skiles 006 , Christine Heitsch , Georgia Tech , Organizer: Christine Heitsch

A brief meeting to discuss the plan for the semester, followed by an informal discussion over lunch (most likely at Ferst Place).

Thursday, August 22, 2019 - 15:05 , Location: Skiles 005 , Paul Jung , KAIST , , Organizer: Michael Damron

A random array indexed by the paths of an infinitely-branching rooted tree of finite depth is hierarchically exchangeable if its joint distribution is invariant under rearrangements that preserve the tree structure underlying the index set. Austin and Panchenko (2014) prove that such arrays have de Finetti-type representations, and moreover, that an array indexed by a finite collection of such trees has an Aldous-Hoover-type representation.

Motivated by problems in Bayesian nonparametrics and probabilistic programming discussed in Staton et al. (2018), we generalize hierarchical exchangeability to a new kind of partial exchangeability for random arrays which we call DAG-exchangeability. In our setting a random array is indexed by N^{|V|} for some DAG G=(V,E), and its exchangeability structure is governed by the edge set E. We prove a representation theorem for such arrays which generalizes the Aldous-Hoover representation theorem, and for which the Austin-Panchenko representation is a special case.