Seminars and Colloquia by Series

Friday, December 8, 2017 - 15:00 , Location: Skiles 005 , Matthew Yancey , Inst. for Defense Analysis , Organizer: Lutz Warnke
Monday, December 4, 2017 - 14:00 , Location: Skiles 006 , Soren Galatius , Stanford University , Organizer: Kirsten Wickelgren
Friday, December 1, 2017 - 15:00 , Location: Skiles 005 , Mustazee Rahman , MIT , mustazee@mit.edu , Organizer: Lutz Warnke
Suppose we want to find the largest independent set or maximal cut in a sparse Erdos-Renyi graph, where the average degree is constant. Many algorithms proceed by way of local decision rules, for instance, the "nibbling" procedure. I will explain a form of local algorithms that captures many of these. I will then explain how these fail to find optimal independent sets or cuts once the average degree of the graph gets large. There are some nice connections to entropy and spin glasses.
Friday, December 1, 2017 - 14:00 , Location: Skiles 006 , TBA , GT Math , Organizer: Sung Ha Kang
TBA
Thursday, November 30, 2017 - 15:05 , Location: Skiles 006 , Matthew Junge , Duke University , jungem@math.duke.edu , Organizer: Gerandy Brito
Wednesday, November 29, 2017 - 13:55 , Location: Skiles 005 , Catherine Beneteau , University of South Florida , Organizer: Shahaf Nitzan
    In this talk, I will discuss some polynomials that are best approximants (in some sense!) to reciprocals of functions in some analytic function spaces of the unit disk.  I will examine the extremal problem of finding a zero of minimal modulus, and will show how that extremal problem is related to the spectrum of a certain Jacobi matrix and real orthogonal polynomials on the real line.
Wednesday, November 29, 2017 - 13:55 , Location: Skiles 006 , Anubhav Mukherjee , Georgia Tech , Organizer: Jennifer Hom
Series: PDE Seminar
Tuesday, November 28, 2017 - 15:05 , Location: Skiles 006 , Eduardo Teixeira , University of Central Florida , eduardo.teixeira@ucf.edu , Organizer: Yao Yao
Friday, November 24, 2017 - 14:00 , Location: Skiles 005 , none , Georgia Tech , Organizer: Lutz Warnke
Official School Holiday: Thanksgiving Break
Monday, November 20, 2017 - 15:05 , Location: Skiles 006 , Philipp Jell , Georgia Tech , Organizer: Matt Baker
Real-valued smooth differential forms on Berkovich analytic spaces were introduced by Chambert-Loir and Ducros. They show many fundamental properties analogous to smooth real differential forms on complex manifolds, which are used for example in Arakelov geometry. In particular, these forms define a real valued bigraded cohomology theory for Berkovich analytic space, called tropical Dolbeault cohomology.  I will explain the definition and properties of these forms and their link to tropical geometry. I will then talk about results regarding the tropical Dolbeault cohomology of varietes and in particular curves. In particular, I will look at finite dimensionality and Poincar\'e duality.

Pages