Seminars and Colloquia by Series

An elementary introduction to the multiscale method of averaging

Series
Research Horizons Seminar
Time
Wednesday, January 28, 2015 - 12:15 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Molei TaoGeorgia Tech Math Department

Please Note: Please note the delayed start for this week only.

The main focus of this talk is a class of asymptotic methods called averaging. These methods approximate complicated differential equations that contain multiple scales by much simpler equations. Such approximations oftentimes facilitate both analysis and computation. The discussion will be motivated by simple examples such as bridge and swing, and it will remain intuitive rather than fully rigorous. If time permits, I will also mention some related projects of mine, possibly including circuits, molecules, and planets.

Quasilinear Schrödinger equations

Series
PDE Seminar
Time
Tuesday, January 27, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jeremy MarzuolaUniversity of North Carolina at Chapel Hill
We survey some recent results by the speaker, Jason Metcalfe and Daniel Tataru for small data local well-posedness of quasilinear Schrödinger equations. In addition, we will discuss some applications recently explored with Jianfeng Lu and recent progress towards the large data short time problem. Along the way, we will attempt to motivate analysis of the problem with connections to problems from Density Functional Theory.

Likelihood Orders for Random Walks on Groups

Series
Combinatorics Seminar
Time
Tuesday, January 27, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Megan BernsteinStanford University
When studying the mixing of random walks on groups, information about the relative likelihoods of the elements under the walk can serve to help understand the mixing and reveal some internal structure. Starting with some elementary arguments of Diaconis and Isaacs and moving into arguments using representation theory of the symmetric group, I'll demonstrate some total and partial orders on finite groups that describe the relative likeliness under random walks. No prior knowledge is assumed.

An Equidistribution Result in Non-Archimedean Dynamics

Series
Algebra Seminar
Time
Monday, January 26, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Kenny JacobsUniversity of Georgia
Let K be a complete, algebraically closed, non-Archimedean field, and let $\phi$ be a rational function defined over K with degree at least 2. Recently, Robert Rumely introduced two objects that carry information about the arithmetic and the dynamics of $\phi$. The first is a function $\ord\Res_\phi$, which describes the behavior of the resultant of $\phi$ under coordinate changes on the projective line. The second is a discrete probability measure $\nu_\phi$ supported on the Berkovich half space that carries arithmetic information about $\phi$ and its action on the Berkovich line. In this talk, we will show that the functions $\ord\Res_\phi(x)$ converge locally uniformly to the Arakelov-Green's function attached to $\phi$, and that the family of measures $\nu_{\phi^n}$ attached to the iterates of $\phi$ converge to the equilibrium measure of $\phi$.​

Nonlinear stability issues for the numerical solution of evolutionary problems

Series
Applied and Computational Mathematics Seminar
Time
Monday, January 26, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Raffaele D'AmbrosioGA Tech
The talk is the continuation of the previous one entitled "Structure-preserving numerical integration of ordinary and partial differential equations [8]" and is aimed to present both classical and more recent results regarding the numerical treatment of nonlinear differential equations, both for deterministic and stochastic problems. The perspective is that of introducing numerical methods which act as structure-preserving integrators, with special emphasys to numerically retaining dissipativity properties possessed by the problem.

Combinatorial tangle Floer homology

Series
Geometry Topology Seminar
Time
Monday, January 26, 2015 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Ina PetkovaRice University
In joint work with Vera Vertesi, we extend the functoriality in Heegaard Floer homology by defining a Heegaard Floer invariant for tangles which satisfies a nice gluing formula. We will discuss theconstruction of this combinatorial invariant for tangles in S^3, D^3, and I x S^2. The special case of S^3 gives back a stabilized version of knot Floer homology.

Stability of Matter II

Series
PDE Working Seminar
Time
Friday, January 23, 2015 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 202
Speaker
Michael LossGeorgia Tech
In this the second of three talks about Stability of Matter I'll give a proof of the Lieb-Thirring inequality and then continue discussing an estimate on what is called the indirect term of the Coulomb energy of N electrons.

Introduction to Nonnegative Rank II

Series
Convex Algebraic Geometry Reading Seminar
Time
Friday, January 23, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Greg BlekhermanGeorgia Tech
I will continue introduction to Nonnegative and PSD ranks of matrices. I will explain the connection between these ranks and constructing linear and semidefinite lifts of polytopes. I will give several different interpretations of these ranks and continue discussing some of their elementary properties.

Statistical matching theory

Series
Combinatorics Seminar
Time
Thursday, January 22, 2015 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Peter CsikvariMIT
In this talk we will survey some recent development on statistical properties of matchings of very large and infinite graphs. The main goal of the talk is to describe a few applications of a new concept called matching measure. These applications include new results on the number of (perfect) matchings in large girth graphs as well as simple new proofs of certain statistical physical theorems. In particular, we will sketch the proof of Friedland's Lower Matching Conjecture, and a new proof of Schrijver's and Gurvits's theorems. This talk is based on joint papers with various subsets of Miklos Abert, Peter E. Frenkel, Tamas Hubai and Gabor Kun.

Some phase transitions in the stochastic block model

Series
Job Candidate Talk
Time
Thursday, January 22, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Joseph NeemanUniversity of Texas, Austin, TX
The stochastic block model is a random graph model that was originally introduced 30 years ago to model community structure in networks. To generate a random graph from this model, begin with two classes of vertices and then connect each pair of vertices independently at random, with probability p if they are in the same class and probability q otherwise. Some questions come to mind: can we reconstruct the classes if we only observe the graph? What if we only want to partially reconstruct the classes? How different is this model from an Erdos-Renyi graph anyway? The answers to these questions depend on p and q, and we will say exactly how.

Pages