Seminars and Colloquia by Series

Friday, September 25, 2009 - 15:00 , Location: Skiles 255 , Mihyun Kang , Technische Universitat Berlin , Organizer: Prasad Tetali
Since the seminal work of Erdos and Renyi the phase transition of the largest components in random graphs became one of the central topics in random graph theory and discrete probability theory. Of particular interest in recent years are random graphs with constraints (e.g. degree distribution, forbidden substructures) including random planar graphs. Let G(n,M) be a uniform random graph, a graph picked uniformly at random among all graphs on vertex set [n]={1,...,n} with M edges. Let P(n,M) be a uniform random planar graph, a graph picked uniformly at random among all graphs on vertex set [n] with M edges that are embeddable in the plane. Erodos-Renyi, Bollobas, and Janson-Knuth-Luczak-Pittel amongst others studied the critical behaviour of the largest components in G(n,M) when M= n/2+o(n) with scaling window of size n^{2/3}. For example, when M=n/2+s with s=o(n) and s \gg n^{2/3}, a.a.s. (i.e. with probability tending to 1 as n approaches \infty) G(n,M) contains a unique largest component (the giant component) of size (4+o(1))s. In contract to G(n,M) one can observe two critical behaviour in P(n,M), when M=n/2+o(n) with scaling window of size n^{2/3}, and when M=n+o(n) with scaling window of size n^{3/5}. For example, when M=n/2+s with s = o(n) and s \gg n^{2/3}, a.a.s. the largest component in P(n,M) is of size (2+o(1))s, roughly half the size of the largest component in G(n,M), whereas when M=n+t with t = o(n) and t \gg n^{3/5}, a.a.s. the number of vertices outside the giant component is \Theta(n^{3/2}t^{-3/2}). (Joint work with Tomasz Luczak)
Friday, September 25, 2009 - 13:00 , Location: Skiles 255 , Benjamin Webb , School of Mathematics, Georgia Tech , Organizer:
In the study of one dimensional dynamical systems one often assumes that the functions involved have a negative Schwarzian derivative. In this talk we consider a generalization of this condition. Specifically, we consider the interval functions of a real variable having some iterate with a negative Schwarzian derivative and show that many known results generalize to this larger class of functions. The introduction of this class was motivated by some maps arising in neuroscience
Thursday, September 24, 2009 - 15:00 , Location: Skiles 269 , Jim Nolen , Duke University , Organizer:
I will describe recent work on the behavior of solutions to reaction diffusion equations (PDEs) when the coefficients in the equation are random.  The solutions behave like traveling waves moving in a randomly varying environment.  I will explain how one can obtain limit theorems (Law of Large Numbers and CLT) for the motion of the interface.  The talk will be accessible to people without much knowledge of PDE.
Thursday, September 24, 2009 - 11:05 , Location: Skiles 269 , Distinguished Professor Craig Tracy , University of California, Davis , Organizer: Guillermo Goldsztein
The asymmetric simple exclusion process (ASEP) is a continuous time Markov process of interacting particles on a lattice \Gamma. ASEP is defined by two rules: (1) A particle at x \in \Gamma waits an exponential time with parameter one, and then chooses y \in \Gamma with probability p(x, y); (2) If y is vacant at that time it moves to y, while if y is occupied it remains at x. The main interest lies in infinite particle systems. In this lecture we consider the ASEP on the integer lattice {\mathbb Z} with nearest neighbor jump rule: p(x, x+1) = p, p(x, x-1) = 1-p and p \ne 1/2. The integrable structure is that of Bethe Ansatz. We discuss various limit theorems which in certain cases establishes KPZ universality.
Wednesday, September 23, 2009 - 14:00 , Location: Skiles 269 , Maxym Yattselev , Vanderbilt University , Organizer:
We consider multipoint Padé approximation to Cauchy transforms of complex measures. First, we recap that if the support of a measure is an analytic Jordan arc and if the measure itself is absolutely continuous with respect to the equilibrium distribution of that arc with Dini-continuous non-vanishing density, then the diagonal multipoint Padé approximants associated with appropriate interpolation schemes converge locally uniformly to the approximated Cauchy transform in the complement of the arc. Second, we show that this convergence holds also for measures whose Radon–Nikodym derivative is a Jacobi weight modified by a Hölder continuous function. The asymptotics behavior of Padé approximants is deduced from the analysis of underlying non–Hermitian orthogonal polynomials, for which the Riemann–Hilbert–∂ method is used.
Series: Other Talks
Wednesday, September 23, 2009 - 13:00 , Location: Skiles 269 , Matt Baker , School of Mathematics, Georgia Tech , Organizer: John Etnyre
I will discuss how various geometric categories (e.g. smooth manifolds, complex manifolds) can be be described in terms of locally ringed spaces. (A locally ringed space is a topological spaces endowed with a sheaf of rings whose stalks are local rings.) As an application of the notion of locally ringed space, I'll define what a scheme is.
Wednesday, September 23, 2009 - 12:00 , Location: Skiles 171 , Stavros Garoufalidis , Georgia Tech School of Mathematics , , Organizer:
Dodgson (the author of Alice in Wonderland) was an amateur mathematician who wrote a book about determinants in 1866 and gave a copy to the queen. The queen dismissed the book and so did the math community for over a century. The Hodgson Condensation method resurfaced in the 80's as the fastest method to compute determinants (almost always, and almost surely). Interested about Lie groups, and their representations? In crystal bases? In cluster algebras? In alternating sign matrices? OK, how about square ice? Are you nuts? If so, come and listen.
Series: PDE Seminar
Tuesday, September 22, 2009 - 15:05 , Location: Skiles 255 , Shigeaki Koike , Saitama University, Japan , Organizer: Zhiwu Lin
We discuss comparison principle for viscosity solutions of fully nonlinear elliptic PDEs in $\R^n$ which may have superlinear growth in $Du$ with variable coefficients. As an example, we keep the following PDE in mind:$$-\tr (A(x)D^2u)+\langle B(x)Du,Du\rangle +\l u=f(x)\quad \mbox{in }\R^n,$$where $A:\R^n\to S^n$ is nonnegative, $B:\R^n\to S^n$ positive, and $\l >0$. Here $S^n$ is the set of $n\ti n$ symmetric matrices. The comparison principle for viscosity solutions has been one of main issues in viscosity solution theory. However, we notice that we do not know if the comparison principle holds unless $B$ is a constant matrix. Moreover, it is not clear which kind of assumptions for viscosity solutions at $\infty$ is suitable. There seem two choices: (1) one sided boundedness ($i.e.$ bounded from below), (2) growth condition.In this talk, assuming (2), we obtain the comparison principle for viscosity solutions. This is a work in progress jointly with O. Ley.
Tuesday, September 22, 2009 - 15:00 , Location: Skiles 269 , Gunter Meyer , School of Mathematics, Georgia Tech , Organizer: Liang Peng
When the asset price follows geometric Brownian motion but allows random Poisson jumps (called jump diffusion) then the standard Black Scholes partial differential for the option price becomes a partial-integro differential equation (PIDE). If, in addition, the volatility of the diffusion is assumed to lie between given upper and lower bounds but otherwise not known then sharp upper and lower bounds on the option price can be found from the Black Scholes Barenblatt equation associated with the jump diffusion PIDE. In this talk I will introduce the model equations and then discuss the computational issues which arise when the Black Scholes Barenblatt PIDE for jump diffusion is to be solved numerically.
Series: Other Talks
Tuesday, September 22, 2009 - 11:00 , Location: ISyE Executive Classroom, Main Building , Michael J. Todd , School of Operations Research and Information Engineering, Cornell University , Organizer:
We discuss the convergence properties of first-order methods for two problems that arise in computational geometry and statistics: the minimum-volume enclosing ellipsoid problem and the minimum-area enclosing ellipsoidal cylinder problem for a set of m points in R^n. The algorithms are old but the analysis is new, and the methods are remarkably effective at solving large-scale problems to high accuracy.