Seminars and Colloquia by Series

Intuitive Dyadic Calculus

Series
Analysis Working Seminar
Time
Monday, October 20, 2014 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Robert RahmSchool of Math
We discuss an approach to dyadic lattices (and their applications to harmonic analysis) presented by Lerner and Nazarov in their manuscript, Intutive Dyadic Calculus.

F-singularities and weak ordinarity

Series
Algebra Seminar
Time
Monday, October 20, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Karl SchwedeUniversity of Utah
I will discuss recent work of Bhargav Bhatt, myself and Shunsuke Takagi relating several open problems and generalizing work of Mustata and Srinivas. First: whether a smooth complex variety is ordinary after reduction to characteristic $p > 0$ for infinitely many $p$. Second: that multiplier ideals reduce to test ideals for infinitely many $p$ (regardless of coefficients). Finally, whether complex varieties with Du Bois singularities have $F$-injective singularities after reduction to infinitely many $p > 0$.

Stochastic Nucleation and Growth

Series
Applied and Computational Mathematics Seminar
Time
Monday, October 20, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Dr. Maria D'OrsognaCal State University Northridge
Given their ubiquity in physics, chemistry and materialsciences, cluster nucleation and growth have been extensively studied,often assuming infinitely large numbers of buildingblocks and unbounded cluster sizes. These assumptions lead to theuse of mass-action, mean field descriptions such as the well knownBecker Doering equations. In cellular biology, however, nucleationevents often take place in confined spaces, with a finite number ofcomponents, so that discrete and stochastic effects must be takeninto account. In this talk we examine finite sized homogeneousnucleation by considering a fully stochastic master equation, solvedvia Monte-Carlo simulations and via analytical insight. We findstriking differences between the mean cluster sizes obtained from ourdiscrete, stochastic treatment and those predicted by mean fieldones. We also study first assembly times and compare results obtained from processes where only monomer attachment anddetachment are allowed to those obtained from general coagulation-fragmentationevents between clusters of any size.

The Filippov moments solution on the intersection of two surfaces

Series
CDSNS Colloquium
Time
Monday, October 20, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fabio DifonzoSchool of Mathematics, Georgia Institute of Technology
We consider several possibilities on how to select a Filippov sliding vector field on a co-dimension 2 singularity manifold, intersection of two co-dimension 1 manifolds, under the assumption of general attractivity. Of specific interest is the selection of a smoothly varying Filippov sliding vector field. As a result of our analysis and experiments, the best candidates of the many possibilities explored are based on the so-called barycentric coordinates: in particular, we choose what we call the moments solution. We then examine the behavior of the moments vector field at first order exit points, and show that it aligns smoothly with the exit vector field. Numerical experiments illustrate our results and contrast the present method with other choices of Filippov sliding vector field. We further present some minimum variation properties, related to orbital equivalence, of Filippov solutions for the co-dimension 2 case in \R^{3}.

On a conjecture of Penner

Series
Geometry Topology Seminar
Time
Friday, October 17, 2014 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Balazs StrennerU Wisconsin
Construction of pseudo-Anosov elements of mapping class groups of surfaces is a non-trivial task. In 1988, Penner gave a very general construction of pseudo-Anosov mapping classes, and he conjectured that all pseudo-Anosov mapping classes arise this way up to finite power. This conjecture was known to be true on some simple surfaces, including the torus. In joint work with Hyunshik Shin, we resolve this conjecture for all surfaces.

Periodic Eigendecomposition and its application in nonlinear dynamics

Series
SIAM Student Seminar
Time
Friday, October 17, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Xiong DingSchool of Physics, Georgia Tech
Periodic eigendecomposition algorithm for calculating eigenvectors of a periodic product of a sequence of matrices, an extension of the periodic Schur decomposition, is formulated and compared with the recently proposed covariant vectors algorithms. In contrast to those, periodic eigendecomposition requires no power iteration and is capable of determining not only the real eigenvectors, but also the complex eigenvector pairs. Its effectiveness, and in particular its ability to resolve eigenvalues whose magnitude differs by hundreds of orders, is demonstrated by applying the algorithm to computation of the full linear stability spectrum of periodic solutions of Kuramoto-Sivashinsky system.

Nonlinear Dispersive Equations III. The compact domain case: from number theory to wave turbulence

Series
PDE Working Seminar
Time
Thursday, October 16, 2014 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zaher HaniGeorgiaTech
In this third and last talk on the topic, we will discuss some issues related to existence and long-time behavior of nonlinear dispersive equations on compact domains (or in the presence of a confinement). There, we will try to convey some elegant interactions of this class of PDE with other fields of mathematics like analytic number theory and dynamical systems. Time permitting, we will discuss how such tools can be used to better understand some questions on wave turbulence.

ARC Colloquium - The Knuth Prize Lecture: The Stories Behind the Results

Series
Other Talks
Time
Wednesday, October 15, 2014 - 13:00 for 1 hour (actually 50 minutes)
Location
Klaus 1116
Speaker
Dick LiptonSchool of Computer Science, Georgia Tech

Please Note: Hosted by Dana Randall

I will present a number of stories about some results that I think highlight how results get proved and how they do not. These will span problems from almost all areas of theory, and will include both successes and failures. I hope that beyond the actual results you will enjoy and hopefully profit from the stories.

Pages