Seminars and Colloquia by Series

L-space knots and Heegaard Floer theory

Series
Geometry Topology Seminar
Time
Monday, April 21, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Faramarz VafaeeMSU
Heegaard Floer theory consists of a set of invariants of three-and four-dimensional manifolds. Three-manifolds with the simplest HeegaardFloer invariants are called L-spaces and the name stems from the fact thatlens spaces are L-spaces. The primary focus of this talk will be on thequestion of which knots in the three-sphere admit L-space surgeries. Wewill also discuss about possible characterizations of L-spaces that do notreference Heegaard Floer homology.

Markets for Database Privacy

Series
ACO Student Seminar
Time
Friday, April 18, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Sara KrehbielGeorgia Tech
Database privacy has garnered a recent surge in interest from the theoretical science community following the seminal work of Dwork 2006, which proposed the strong notion of differential privacy. In this setting, each row of a database corresponds to the data owned by some (distinct) individual. An analyst submits a database query to a differentially private mechanism, which replies with a noisy answer guaranteeing privacy for the data owners and accuracy for the analyst. The mechanism's privacy parameter \epsilon is correlated negatively with privacy and positively with accuracy.This work builds a framework for creating and analyzing a market that 1) solves for some socially efficient value of \epsilon using the privacy and accuracy preferences of a heterogeneous body of data owners and a single analyst, 2) computes a noisy statistic on the database, and 3) collects and distributes payments for privacy that elicit truthful reporting of data owners' preferences. We present a market for database privacy in this new framework expanding on the public goods market of Groves and Ledyard, 1977.

Proximality and regional proximality in topological dynamics

Series
CDSNS Colloquium
Time
Friday, April 18, 2014 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Professor Joe AuslanderUniversity of Maryland
Let (X, T) be a flow, that is a continuous left action of the group T on the compact Hausdorff space X. The proximal P and regionally proximal RP relations are defined, respectively (assuming X is a metric space) by P = {(x; y) | if \epsilon > 0 there is a t \in T such that d(tx, ty) < \epsilon} and RP = {(x; y) | if \epsilon > 0 there are x', y' \in X and t \in T such that d(x; x') < \epsilon, d(y; y') < \epsilon and t \in T such that d(tx'; ty') < \epsilon}. We will discuss properties of P and RP, their similarities and differences, and their connections with the distal and equicontinuous structure relations. We will also consider a relation V defined by Veech, which is a subset of RP and in many cases coincides with RP for minimal flows.

Sandpiles and system-spanning avalanches

Series
Stochastics Seminar
Time
Thursday, April 17, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Lionel LevineCornell University
A sandpile on a graph is an integer-valued function on the vertices. It evolves according to local moves called topplings. Some sandpiles stabilize after a finite number of topplings, while others topple forever. For any sandpile s_0 if we repeatedly add a grain of sand at an independent random vertex, we eventually reach a sandpile s_\tau that topples forever. Statistical physicists Poghosyan, Poghosyan, Priezzhev and Ruelle conjectured a precise value for the expected amount of sand in this "threshold state" s_\tau in the limit as s_0 goes to negative infinity. I will outline the proof of this conjecture in http://arxiv.org/abs/1402.3283 and explain the big-picture motivation, which is to give more predictive power to the theory of "self-organized criticality".

Infinite energy cascades and modified scattering for the cubic Schr\"odinger on product spaces

Series
PDE Seminar
Time
Thursday, April 17, 2014 - 15:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Zaher HaniNew York University
We consider the cubic nonlinear Schr\"odinger equation posed on the product spaces \R\times \T^d. We prove the existence of global solutions exhibiting infinite growth of high Sobolev norms. This is a manifestation of the "direct energy cascade" phenomenon, in which the energy of the system escapes from low frequency concentration zones to arbitrarily high frequency ones (small scales). One main ingredient in the proof is a precise description of the asymptotic dynamics of the cubic NLS equation when 1\leq d \leq 4. More precisely, we prove modified scattering to the resonant dynamics in the following sense: Solutions to the cubic NLS equation converge (as time goes to infinity) to solutions of the corresponding resonant system (aka first Birkhoff normal form). This is joint work with Benoit Pausader (Princeton), Nikolay Tzvetkov (Cergy-Pontoise), and Nicola Visciglia (Pisa).

Turan Number of the Generalized Triangle

Series
Graph Theory Seminar
Time
Thursday, April 17, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Liana YepremyanMcGill University (Montreal) and Georgia Tech
Generalized triangle T_r is an r-graph with edges {1,2,…,r}, {1,2,…,r-1, r+1} and {r,r+1, r+2, …,2r-2}. The family \Sigma_r consists of all r-graphs with three edges D_1, D_2, D_3 such that |D_1\cap D_2|=r-1 and D_1\triangle D_2\subset D_3. In 1989 it was conjectured by Frankl and Furedi that ex(n,T_r) = ex(n,\Sigma_r) for large enough n, where ex(n,F) is the Tur\'{a}n function. The conjecture was proven to be true for r=3, 4 by Frankl, Furedi and Pikhurko respectively. We settle the conjecture for r=5,6 and show that extremal graphs are blow-ups of the unique (11, 5, 4) and (12, 6, 5) Steiner systems. The proof is based on a technique for deriving exact results for the Tur\'{a}n function from “local stability" results, which has other applications. This is joint work with Sergey Norin.

Bi-parameter singular integrals: recent results and examples

Series
Analysis Seminar
Time
Wednesday, April 16, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Henri MartikainenGeorgia Tech
We discuss bi-parameter Calderon-Zygmund singular integrals from the point of view of modern probabilistic and dyadic techniques. In particular, we discuss their structure and boundedness via dyadic model operators. In connection to this we demonstrate, via new examples, the delicacy of the problem of finding a completely satisfactory product T1 theorem. Time permitting related non-homogeneous bi-parameter results may be mentioned.

Monoids in the braid and mapping class groups from contact topology

Series
Geometry Topology Seminar
Time
Wednesday, April 16, 2014 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jeremy Van Horn-MorrisUniversity of Arkansas
A monoidal subset of a group is any set which is closed under the product (and contains the identity). The standard example is Dehn^+, the set of maps whcih can be written as a product of right-handed Dehn twists. Using open book decompositions, many properties of contact 3-manifolds are encoded as monoidal subsets of the mapping class group. By a related construction, contact topology also produces a several monoidal subsets of the braid group. These generalize the notion of positive braids and Rudolphs ideas of quasipositive and strongly quasipositive. We'll discuss the construction of these monoids and some of the many open questions.

Topics in Ergodic Theory VII: Ruelle's Entropy Inequality.

Series
Dynamical Systems Working Seminar
Time
Wednesday, April 16, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles
Speaker
Rafael de la LlaveGeorgia Tech
We prove Ruelle's Entropy Inequality for C^1 maps. This is part of a reading seminar geared towards understanding of Smooth Ergodic Theory. (The study of dynamical systems using at the same time tools from measure theory and from differential geometry)It should be accesible to graduate students and the presentation is informal. The first goal will be a proof of the Oseledets multiplicative ergodic theorem for random matrices. Then, we will try to cover the Pesin entropy formula, invariant manifolds, etc.

Pages