- You are here:
- GT Home
- Home
- News & Events

Series: Stochastics Seminar

In this approach to the Gaussian Correlation Conjecture we must check the log-concavity of the moment generating function of certain measures pulled down by a particular Gaussian density.

Series: Other Talks

The Southeast Geometry Seminar (SGS) is a semiannual series of one day events organized by Vladimir Oliker (Emory), Mohammad Ghomi and John McCuan (Georgia Tech) and Gilbert Weinstein (UAB). See http://www.math.uab.edu/sgs for details

Series: PDE Seminar

We calculate numerically the solutions of the stationary Navier-Stokes equations in two dimensions, for a square domain with particular choices of boundary data. The data are chosen to test whether bounded disturbances on the boundary can be expected to spread into the interior of the domain. The results indicate that such behavior indeed can occur, but suggest an estimate of general form for the magnitudes of the solution and of its derivatives, analogous to classical bounds for harmonic functions. The qualitative behavior of the solutions we found displayed some striking and unexpected features. As a corollary of the study, we obtain two new examples of non-uniqueness for stationary solutions at large Reynolds numbers.

Series: Combinatorics Seminar

Expanders via Random Spanning Trees Motivated by the problem of routing reliably and scalably in a graph, we introduce the notion of a splicer, the union of spanning trees of a graph. We prove that for any bounded-degree n-vertex graph, the union of two random spanning trees approximates the expansion of every cut of the graph to within a factor of O(log n). For the random graph G_{n,p}, for p > c (log n)/n, two spanning trees give an expander. This is suggested by the case of the complete graph, where we prove that two random spanning trees give an expander. The construction of the splicer is elementary — each spanning tree can be produced independently using an algorithm by Aldous and Broder: a random walk in the graph with edges leading to previously unvisited vertices included in the tree. A second important application of splicers is to graph sparsification where the goal is to approximate every cut (and more generally the quadratic form of the Laplacian) using only a small subgraph of the original graph. Benczur-Karger as well as Spielman-Srivastava have shown sparsifiers with O(n log n/eps^2) edges that achieve approximation within factors 1+eps and 1-eps. Their methods, based on independent sampling of edges, need Omega(n log n) edges to get any approximation (else the subgraph could be disconnected) and leave open the question of linear-size sparsifiers. Splicers address this question for random graphs by providing sparsifiers of size O(n) that approximate every cut to within a factor of O(log n). This is joint work with Navin Goyal and Santosh Vempala.

Wednesday, December 3, 2008 - 11:00 ,
Location: Skiles 255 ,
Andrei Fedorov ,
School of Mechanical Engineering, Georgia Tech ,
Organizer:

In this presentation I will outline physical principles of two analytical techniques, the Scanning ElectroChemical Microscopy (SECM) and Scanning Mass Spectrometry (SMS), which can be used to obtain the spatially resolved images of (bio/electro)chemically active interfaces. The mathematical models need to be employed for image interpretation and mapping measured quantities (e.g., an electrode current in SECM) to biochemically relevant quantities (e.g., kinetics of exocytotic signaling events in cellular communications), and I will review the key ideas/assumptions used for the model formulation and the main results of analysis and simulations. In conclusion, an alternative approach to spatially-resolved imaging based on the multi-probe array will be introduced along with intriguing opportunities and challenges for mathematical interpretation of such images.

Series: PDE Seminar

The usual boundary condition adjoined to a second order elliptic equation is the Dirichlet problem, which prescribes the values of the solution on the boundary. In many applications, this is not the natural boundary condition. Instead, the value of some directional derivative is given at each point of the boundary. Such problems are usually considered a minor variation of the Dirichlet condition, but this talk will show that this problem has a life of its own. For example, if the direction changes continuously, then it is possible for the solution to be continuously differentiable up to a merely Lipschitz boundary. In addition, it's possible to get smooth solutions when the direction changes discontinuously as well.

Series: Geometry Topology Seminar

A broken fibration is a map from a smooth 4-manifold to S^2 with isolated Lefschetz singularities and isolated fold singularities along circles. These structures provide a new framework for studying the topology of 4-manifolds and a new way of studying Floer theoretical invariants of low dimensional manifolds. In this talk, we will first talk about topological constructions of broken Lefschetz fibrations. Then, we will describe Perutz's 4-manifold invariants associated with broken fibrations and a TQFT-like structure corresponding to these invariants. The main goal of this talk is to sketch a program for relating these invariants to Ozsváth-Szabó invariants.

Series: Geometry Topology Seminar

We will begin with an overview of the Burau representation of the braid group. This will be followed by an introduction to a contact category on 3-manifolds, with a brief discussion of its relation to the braid group.

Series: Analysis Seminar

In this talk we will discuss a generalization of monotone sequences/functions as well as of those of bounded variation. Some applications to various problems of analysis (the Lp-convergence of trigonometric series, the Boas-type problem for the Fourier transforms, the Jackson and Bernstein inequalities in approximation, etc.) will be considered.

Series: Analysis Seminar

Note time change.

Let I_\alpha be the fractional integral operator. The Olsen inequality, useful in certain PDEs, concerns multiplication operators and fractional integrals in the L^p-norm, or more generally, the Morrey norm. We strenghten this inequality from the one given by Olsen.