Seminars and Colloquia by Series

Computing linear sections of varieties: quantum entanglement, tensor decompositions and beyond

Series
Algebra Seminar
Time
Monday, April 22, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Benjamin LovitzNortheastern University

Please Note: There will be a pre-seminar at 11am in Skiles 005.

Given a basis for a linear subspace U of nxn matrices, we study the problem of either producing a rank-one matrix in U, or certifying that none exist. While this problem is NP-Hard in the worst case, we present a polynomial time algorithm to solve this problem in the generic setting under mild conditions on the dimension of U. Our algorithm is based on Hilbert’s Nullstellensatz and a “lifted” adaptation of the simultaneous diagonalization algorithm for tensor decompositions. We extend our results to the more general setting in which the set of rank-one matrices is replaced by an algebraic set. Time permitting, we will discuss applications to quantum separability testing and tensor decompositions. This talk is based on joint work with Harm Derksen, Nathaniel Johnston, and Aravindan Vijayaraghavan.

Galois/Monodromy Groups in 3D Reconstruction

Series
Algebra Seminar
Time
Tuesday, April 16, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Tim DuffUniversity of Washington

Please Note: The seminar has been rescheduled from Monday to Tuesday.

Galois groups embody the structure of algebraic equations arising in both enumerative geometry and various scientific applications where such equations must be solved. I will describe a line of work that aims to elucidate the role of Galois groups in applications where data taken from multiple images are used to reconstruct a 3D scene. From this perspective, I will revisit two well-known solutions to camera pose estimation problems, which originate from classical photogrammetry and are still heavily used within modern 3D reconstruction systems. I will then discuss some less-classical problems, for which the insight we gleaned from computing Galois groups led to significant practical improvements over previous solutions. A key ingredient was the use of numerical homotopy continuation methods to (heuristically) compute monodromy permutations. Time-permitting, I will explain how such methods may also be used to automatically recover certain symmetries underlying enumerative problems. 

Identifiability of overcomplete independent component analysis

Series
Algebra Seminar
Time
Monday, April 8, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Ada WangHarvard University

Please Note: There will be a pre-seminar in Skiles 005 at 11 am.

Independent component analysis (ICA) is a classical data analysis method to study mixtures of independent sources. An ICA model is said to be identifiable if the mixing can be recovered uniquely. Identifiability is known to hold if and only if at most one of the sources is Gaussian, provided the number of sources is at most the number of observations. In this talk, I will discuss our work to generalize the identifiability of ICA to the overcomplete setting, where the number of sources can exceed the number of observations.The underlying problem is algebraic and the proof studies linear spaces of rank one symmetric matrices. Based on joint work with Anna Seigal https://arxiv.org/abs/2401.14709

q-Chromatic Polynomials

Series
Algebra Seminar
Time
Monday, April 1, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andrés R. Vindas MeléndezUniversity of California, Berkeley
We introduce and study a $q$-version of the chromatic polynomial of a given graph $G=(V,E)$, namely,
\[\chi_G^\lambda(q,n) \ := \sum_{\substack{\text{proper colorings}\\ c\,:\,V\to[n]}} q^{ \sum_{ v \in V } \lambda_v c(v) },\] where $\lambda \in \mathbb{Z}^V$ is a fixed linear form.
Via work of Chapoton (2016) on $q$-Ehrhart polynomials, $\chi_G^\lambda(q,n)$ turns out to be a polynomial in the $q$-integer $[n]_q$, with coefficients that are rational functions in $q$.
Additionally, we prove structural results for $\chi_G^\lambda(q,n)$ and exhibit connections to neighboring concepts, e.g., chromatic symmetric functions and the arithmetic of order polytopes.
We offer a strengthened version of Stanley's conjecture that the chromatic symmetric function distinguishes trees, which leads to an analogue of $P$-partitions for graphs.
This is joint work with Esme Bajo and Matthias Beck.

Welschinger Signs and the Wronski Map (New conjectured reality)

Series
Algebra Seminar
Time
Monday, March 25, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Frank SottileTexas A&M University

Please Note: There will be a pre-seminar (aimed toward grad students and postdocs) from 11:00 am to 11:30 am in Skiles 005.

A general real rational plane curve C of degree d has 3(d-2) flexes and (d-1)(d-2)/2 complex double points. Those double points lying in RP^2 are either nodes or solitary points. The Welschinger sign of C is (-1)^s, where s is the number of solitary points. When all flexes of C are real, its parameterization comes from a point on the Grassmannian under the Wronskii map, and every parameterized curve with those flexes is real (this is the Mukhin-Tarasov-Varchenko Theorem). Thus to C we may associate the local degree of the Wronskii map, which is also 1 or -1. My talk will discuss work with Brazelton and McKean towards a possible conjecture that these two signs associated to C agree, and the challenges to gathering evidence for this.

Bertini theorems, connectivity of tropical varieties, and multivariate Puiseux series

Series
Algebra Seminar
Time
Monday, March 11, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Josephine YuGeorgia Tech

A theorem of Bertini says that an irreducible algebraic variety remains irreducible after intersecting with a generic hyperplane.  We will discuss toric Bertini theorems for intersections with generic algebraic subtori (defined by generic binomial equations) instead of hyperplanes. As an application, we obtain a tropical Bertini theorem and a strengthening of the Structure Theorem of tropical algebraic geometry, by showing that irreducible tropical varieties remain connected through codimension one even after removing some facets.  As part of the proof of the Toric Bertini over prime characteristics, we constructed a new algebraically closed field containing the multivariate rational functions, which is smaller than previously known constructions.  This is based on joint works with Diane Maclagan, Francesca Gandini, Milena Hering, Fatemeh Mohammadi, Jenna Rajchgot, and Ashley Wheeler.

Effective Whitney Stratification of Real Algebraic Varieties and Applications

Series
Algebra Seminar
Time
Monday, March 4, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Martin HelmerNorth Carolina State University

Please Note: There will be a pre-seminar from 11 am to 11:30 am in Skiles 005.

We describe an algorithm to compute Whitney stratifications of real algebraic varieties, and of polynomial maps between them, by exploiting the algebraic structure of certain conormal spaces.  One of the map stratification algorithms described here yields a new method for solving the real root classification problem. We also explore applications of this new map stratification algorithm to the study of the singularities of Feynman integrals; understanding and evaluating these integrals is a fundamental component in a wide variety of problems arising in quantum field theory. 

Splitting of vector bundles on toric varieties

Series
Algebra Seminar
Time
Tuesday, February 27, 2024 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Mahrud SayrafiUniversity of Minnesota

In 1964, Horrocks proved that a vector bundle on a projective space splits as a sum of line bundles if and only if it has no intermediate cohomology. Generalizations of this criterion, under additional hypotheses, have been proven for other toric varieties, for instance by Eisenbud-Erman-Schreyer for products of projective spaces, by Schreyer for Segre-Veronese varieties, and Ottaviani for Grassmannians and quadrics. This talk is about a splitting criterion for arbitrary smooth projective toric varieties, as well as an algorithm for finding indecomposable summands of sheaves and modules in the more general setting of Mori dream spaces.

Permutation action on Chow rings of matroids

Series
Algebra Seminar
Time
Monday, February 19, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Anastasia NathansonUniversity of Minnesota

Please Note: There will be a pre-seminar (aimed toward grad students and postdocs) from 11:00 am to 11:30 am in Skiles 005.

Given a matroid and a group of its matroid automorphisms, we study the induced group action on the Chow ring of the matroid. This turns out to always be a permutation action. Work of Adiprasito, Huh and Katz showed that the Chow ring satisfies Poincar\'e duality andthe Hard Lefschetz theorem.  We lift these to statements about this permutation action, and suggest further conjectures in this vein.

Determinantal zeros and factorization of noncommutative polynomials

Series
Algebra Seminar
Time
Monday, February 12, 2024 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jurij VolčičDrexel University

Please Note: There will be a pre-seminar (aimed toward grad students and postdocs) from 11:00 am to 11:30am in Skiles 005.

Hilbert's Nullstellensatz about zero sets of polynomials is one of the most fundamental correspondences between algebra and geometry. More recently, there has been an emerging interest in polynomial equations and inequalities in several matrix variables, prompted by developments in control systems, quantum information theory, operator algebras and optimization. The arising problems call for a suitable version of (real) algebraic geometry in noncommuting variables; with this in mind, the talk considers matricial sets where noncommutative polynomials attain singular values, and their algebraic counterparts.

Given a polynomial f in noncommuting variables, its free (singularity) locus is the set of all matrix tuples X such that f(X) is singular.  The talk focuses on the interplay between geometry of free loci (irreducible components, inclusions, eigenlevel sets, smooth points) and factorization in the free algebra. In particular, a Nullstellensatz for free loci is given, as well as a noncommutative variant of Bertini's irreducibility theorem and its consequences.

Pages