Seminars and Colloquia by Series

Monday, April 3, 2017 - 15:15 , Location: Skiles 006 , Jo Nelson , Barnard College, Columbia University , Organizer: Caitlin Leverson
I will discuss joint work with Hutchings which gives a rigorousconstruction of cylindrical contact homology via geometric methods. Thistalk will highlight our use of non-equivariant constructions, automatictransversality, and obstruction bundle gluing. Together these yield anonequivariant homological contact invariant which is expected to beisomorphic to SH^+ under suitable assumptions. By making use of familyFloer theory we obtain an S^1-equivariant theory defined with coefficientsin Z, which when tensored with Q recovers the classical cylindrical contacthomology, now with the guarantee of well-definedness and invariance. Thisintegral lift of contact homology also contains interesting torsioninformation.
Monday, April 3, 2017 - 14:00 , Location: Skiles 006 , Josh Greene , Boston College , Organizer: John Etnyre
I will describe a diagrammatic classification of (1,1) knots in S^3 and lens spaces that admit non-trivial L-space surgeries. A corollary of the classification is that 1-bridge braids in these manifolds admit non-trivial L-space surgeries. This is joint work with Sam Lewallen and Faramarz Vafaee.
Monday, March 27, 2017 - 14:00 , Location: Skiles 006 , Roger Casals , MIT , Organizer: John Etnyre
In this talk we associate a combinatorial dg-algebra to a cubic planar graph. This algebra is defined by counting binary sequences, which we introduce, and we shall provide explicit computations. From there, we study the Legendrian surfaces behind these combinatorial constructions, including Legendrian surgeries and the count of Morse flow trees, and discuss the proof of the correspondence between augmentations and constructible sheaves for this class of Legendrians.
Monday, March 20, 2017 - 14:05 , Location: Skiles 006 , None , None , Organizer: Jennifer Hom
Monday, March 13, 2017 - 15:30 , Location: Skiles 006 , David Gay , UGA , Organizer: Caitlin Leverson
This is joint work with Jeff Meier. The Gluck twist operation removes an S^2XB^2 neighborhood of a knotted S^2 in S^4 and glues it back with a twist, producing a homotopy S^4 (i.e. potential counterexamples to the smooth Poincare conjecture, although for many classes of 2-knots theresults are in fact known to be smooth S^4's). By representing knotted S^2's in S^4 as doubly pointed Heegaard triples and understanding relative trisection diagrams of S^2XB^2 carefully, I'll show how to produce trisection diagrams (a.k.a. Heegaard triples) for these homotopy S^4's.(And for those not up on trisections I'll review the foundations.) The resulting recipe is surprisingly simple, but the fun, as always, is in the process.
Monday, March 13, 2017 - 14:05 , Location: Skiles 006 , Kristen Hendricks , Michigan State University , Organizer: Jennifer Hom
We use the conjugation symmetry on the Heegaard Floer complexes to define a three-manifold invariant called involutive Heegaard Floer homology, which is meant to correspond to Z_4-equivariant Seiberg-Witten Floer homology. From this we obtain two new invariants of homology cobordism, explicitly computable for surgeries on L-space knots and quasi-alternating knots, and two new concordance invariants of knots, one of which (unlike other invariants arising from Heegaard Floer homology) detects non-sliceness of the figure-eight knot. We also give a formula for how this theory behaves under connected sum, and use it to give examples not homology cobordant to anything computable via our surgery formula. This is joint work with C. Manolescu; the last part of is also joint with I. Zemke.
Monday, March 6, 2017 - 14:00 , Location: Skiles 006 , Dan Rrutherford , Ball State University , Organizer: John Etnyre
This is joint work with Mike Sullivan. We consider a Legendrian surface L in R5 or more generally in the 1-jet space of a surface. Such a Legendrian can be conveniently presented via its front projection which is a surface in R3 that is immersed except for certain standard singularities. We associate a differential graded algebra (DGA) to L by starting with a cellular decomposition of the base projection to R2 of L that contains the projection of the singular set of L in its 1-skeleton. A collection of generators is associated to each cell, and the differential is determined in a formulaic manner by the nature of the singular set above the boundary of a cell. Our cellular DGA is equivalent to the Legendrian contact homology DGA of L whose construction was carried out in this setting by Etnyre-Ekholm-Sullivan with the differential defined by counting holomorphic disks in C2 with boundary on the Lagrangian projection of L. Equivalence of our DGA with LCH is established using work of Ekholm on gradient flow trees. Time permitting, we will discuss constructions of augmentations of the cellular DGA from two parameter families of functions.
Monday, February 20, 2017 - 14:05 , Location: Skiles 006 , Christine Lee , University of Texas at Austin , , Organizer: Stavros Garoufalidis
A Jones surface for a knot in the three-sphere is an essential surface whose boundary slopes, Euler characteristic, and number of sheets correspond to quantities defined from the asymptotics of the degrees of colored Jones polynomial. The Strong Slope Conjecture by Garoufalidis and Kalfagianni-Tran predicts that there are Jones surfaces for every knot. A link diagram D is said to be a Murasugi sum of two links D' and D'' if a state graph of D has a cut vertex, which separates the graph into two state graphs of D' and D'', respectively. We may obtain a state surface in the complement of the link K represented by D by gluing the state surface for D and the state surface for D' along the disk filling the circle represented by the cut vertex in the state graph. The resulting surface is called the Murasugi sum of the two state surfaces. We consider near-adequate links which are certain Murasugi sums of near-alternating link diagrams with an adequate link diagram along their all-A state graphs with an additional graphical constraint. For a near-adequate knot, the Murasugi sum of the corresponding state surface is a Jones surface by the work of Ozawa. We discuss how this proves the Strong Slope Conjecture for this class of knots.
Monday, February 13, 2017 - 14:00 , Location: Skiles 006 , Nathan Sunukjian , Calvin College , Organizer: John Etnyre
A 2-knot is defined to be an embedding of S^2 in S^4. Unlike the theory of concordance for knots in S^3, the theory of concordance of 2-knots is trivial. This talk will be framed around the related concept of 0-concordance of 2-knots. It has been conjectured that this is also a trivial theory, that every 2-knot is 0-concordant to every other 2-knot. We will show that this conjecture is false, and in fact there are infinitely many 0-concordance classes. We'll in particular point out how the concept of 0-concordance is related to understanding smooth structures on S^4. The proof will involve invariants coming from Heegaard-Floer homology, and we will furthermore see how these invariants can be used shed light on other properties of 2-knots such as amphichirality and invertibility.
Monday, February 6, 2017 - 14:30 , Location: UGA Room 303 , Dan Cristofaro-Gardiner and John Etnyre , Harvard and Georgia Tech , Organizer: Caitlin Leverson
John Etnyre: "Embeddings of contact manifolds" Abstract: I will discuss recent results concerning embeddings and isotopies of one contact manifold into another. Such embeddings should be thought of as generalizations of transverse knots in 3-dimensional contact manifolds (where they have been instrumental in the development of our understanding of contact geometry). I will mainly focus on embeddings of contact 3-manifolds into contact 5-manifolds.  In this talk I will discuss joint work with Ryo Furukawa aimed at using braiding techniques to study contact embeddings. Braided embeddings give an explicit way to represent some (maybe all) smooth embeddings and should be useful in computing various invariants. If time permits I will also discuss other methods for embedding and constructions one may perform on contact submanifolds. Dan Cristofaro-Gardiner: "Beyond the Weinstein conjecture" Abstract: The Weinstein conjecture states that any Reeb vector field on a closed manifold has at least one closed orbit. The three-dimensional case of this conjecture was proved by Taubes in 2007, and Hutchings and I later showed that in this case there are always at least 2 orbits. While examples exist with exactly two orbits, one expects that this lower bound can be significantly improved with additional assumptions. For example, a theorem of Hofer, Wysocki, and Zehnder states that a generic nondegenerate Reeb vector field associated to the standard contact structure on $S^3$ has either 2, or infinitely many, closed orbits. We prove that any nondegenerate Reeb vector field has 2 or infinitely many closed orbits as long as the associated contact structure has torsion first Chern class. This is joint work with Mike Hutchings and Dan Pomerleano.