Seminars and Colloquia by Series

Hodge Theory in Combinatorics by Eric Katz

Series
School of Mathematics Colloquium
Time
Thursday, January 14, 2016 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Eric KatzUniversity of Waterloo
We discuss applications of Hodge theory which is a part of algebraic geometry to problems in combinatorics, in particular to Rota's Log-concavity Conjecture. The conjecture was motivated by a question in enumerating proper colorings of a graph which are counted by the chromatic polynomial. This polynomial's coefficients were conjectured to form a unimodal sequence by Read in 1968. This conjecture was extended by Rota in his 1970 ICM address to assert the log-concavity of the characteristic polynomial of matroids which are the common combinatorial generalizations of graphs and linear subspaces. We discuss the resolution of this conjecture which is joint work with Karim Adiprasito and June Huh. The solution draws on ideas from the theory of algebraic varieties, specifically Hodge theory, showing how a question about graph theory leads to a solution involving Grothendieck's standard conjectures. This talk is a preview for the upcoming workshop at Georgia Tech.

Moduli of graphs

Series
School of Mathematics Colloquium
Time
Friday, December 4, 2015 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Karen VogtmannUniversity of Warwick

Please Note: Kick-off of the Tech Topology Conference, December 4-6, 2015

Finite metric graphs are used to describe many phenomena in mathematics and science, so we would like to understand the space of all such graphs, which is called the moduli space of graphs. This space is stratified by subspaces consisting of graphs with a fixed number of loops and leaves. These strata generally have complicated structure that is not at all well understood. For example, Euler characteristic calculations indicate a huge number of nontrivial homology classes, but only a very few have actually been found. I will discuss the structure of these moduli spaces, including recent progress on the hunt for homology based on joint work with Jim Conant, Allen Hatcher and Martin Kassabov.

Thin Position for Knots and Topological Data Analysis

Series
School of Mathematics Colloquium
Time
Thursday, November 19, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jesse JohnsonGoogle
Topological data analysis is the study of Machine Learning/Data Mining problems using techniques from geometry and topology. In this talk, I will discuss how the scale of modern data analysis has made the geometric/topological perspective particularly relevant for these subjects. I'll then introduce an approach to the clustering problem inspired by a tool from knot theory called thin position.

Recent progress in stochastic topology

Series
School of Mathematics Colloquium
Time
Thursday, November 12, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Dr. Matthew KahleOhio State University
The study of random topological spaces: manifolds, simplicial complexes, knots, and groups, has received a lot of attention in recent years. This talk will focus on random simplicial complexes, and especially on a certain kind of topological phase transition, where the probability that that a certain homology group is trivial passes from 0 to 1 within a narrow window. The archetypal result in this area is the Erdős–Rényi theorem, which characterizes the threshold edge probability where the random graph becomes connected. One recent breakthrough has been in the application of Garland’s method, which allows one to prove homology-vanishing theorems by showing that certain Laplacians have large spectral gaps. This reduces problems in random topology to understanding eigenvalues of certain random matrices, and the method has been surprisingly successful. This is joint work with Christopher Hoffman and Elliot Paquette.

Math Problems in Gene Regulation

Series
School of Mathematics Colloquium
Time
Thursday, November 5, 2015 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Caroline UhlerMIT
Although the genetic information in each cell within an organism is identical, gene expression varies widely between different cell types. The quest to understand this phenomenon has led to many interesting mathematics problems. First, I will present a new method for learning gene regulatory networks. It overcomes the limitations of existing algorithms for learning directed graphs and is based on algebraic, geometric and combinatorial arguments. Second, I will analyze the hypothesis that the differential gene expression is related to the spatial organization of chromosomes. I will describe a bi-level optimization formulation to find minimal overlap configurations of ellipsoids and model chromosome arrangements. Analyzing the resulting ellipsoid configurations has important implications for the reprogramming of cells during development. Any knowledge of biology which is needed for the talk will be introduced during the lecture.

Best and random approximation of convex bodies by polytopes

Series
School of Mathematics Colloquium
Time
Thursday, October 15, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Dr. Elisabeth WernerCase Western Reserve University
How well can a convex body be approximated by a polytope? This is a fundamental question in convex geometry, also in view of applications in many other areas of mathematics and related fields. It often involves side conditions like a prescribed number of vertices, or, more generally, k-dimensional faces and a requirement that the body contains the polytope or vice versa. Accuracy of approximation is often measured in the symmetric difference metric, but other metrics can and have been considered. We will present several results about these issues, mostly related to approximation by “random polytopes”.

How unstable is our solar system?

Series
School of Mathematics Colloquium
Time
Thursday, September 17, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dr. Jinxin XueUniversity of Chicago
Though the modern analytic celestial mechanics has been existing for more than 300 years since Newton, there are still many basic questions unanswered, for instance, there is still no rigorous mathematical proof explaining why our solar system has been stable for such a long time (five billion years) hence no guarantee that it would remain stable for the next five billion years. Instead, it is known that there are various instability behaviors in the Newtonian N-body problem. In this talk, we mention three types instability behaviors in Newtonian N-body problem. The first type we will talk about is simply chaotic motions, which include for instance the oscillatory motions, in which case, one body travels back and forth between neighborhoods of zero and infinity. The second type is “organized” chaotic motions, also known as Arnold diffusion or weak turbulence. Finally, we will talk about our work on the existence of the most wild unstable behavior, non collision singularities, also called finite time blow up solution. The talk is mostly expository. Zero background on celestial mechanism or dynamical systems is needed to follow the lecture.

Approximate separability of Green’s function and intrinsic complexity of differential operators

Series
School of Mathematics Colloquium
Time
Thursday, September 10, 2015 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Prof. Dr. Hongkai ZhaoUniversity of California, Irvine
Approximate separable representation of the Green’s functions for differential operators is a fundamental question in the analysis of differential equations and development of efficient numerical algorithms. It can reveal intrinsic complexity, e.g., Kolmogorov n-width or degrees of freedom of the corresponding differential equation. Computationally, being able to approximate a Green’s function as a sum with few separable terms is equivalent to the existence of low rank approximation of the discretized system which can be explored for matrix compression and fast solution techniques such as in fast multiple method and direct matrix inverse solver. In this talk, we will mainly focus on Helmholtz equation in the high frequency limit for which we developed a new approach to study the approximate separability of Green’s function based on an geometric characterization of the relation between two Green's functions and a tight dimension estimate for the best linear subspace approximating a set of almost orthogonal vectors. We derive both lower bounds and upper bounds and show their sharpness and implications for computation setups that are commonly used in practice. We will also make comparisons with other types of differential operators such as coercive elliptic differential operator with rough coefficients in divergence form and hyperbolic differential operator. This is a joint work with Bjorn Engquist.

Time-Domain Boundary Element Methods for Acoustic Problems - Sound Radiation from Tyres

Series
School of Mathematics Colloquium
Time
Thursday, August 20, 2015 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Prof. Dr. Ernst StephanLeibniz University Hannover

Please Note: Special time.

We consider the time-domain boundary element method for exterior Robin type boundary value problems for the wave equation. We apply a space-time Galerkin method, present a priori and a posteriori error estimates, and derive an h-adaptive algorithm in space and time with mesh refinement driven by error indicators of residual and hierarchical type. Numerical experiments are also given which underline our theoretical results. Special emphasis is given to numerical simulations of the sound radiation of car tyres.

Absence of shocks in Euler-Maxwell system for two-fluid models in plasma

Series
School of Mathematics Colloquium
Time
Thursday, April 23, 2015 - 11:01 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Yan GuoBrown University
As the cornerstone of two-fluid models in plasma theory, Euler-Maxwell (Euler-Poisson) system describes the dynamics of compressible ion and electron fluids interacting with their own self-consistent electromagnetic field. It is also the origin of many famous dispersive PDE such as KdV, NLS, Zakharov, ...etc. The electromagnetic interaction produces plasma frequencies which enhance the dispersive effect, so that smooth initial data with small amplitude will persist forever for the Euler-Maxwell system, suppressing any possible shock formation. This is in stark contrast to the classical Euler system for a compressible neutral fluid, for which shock waves will develop even for small smooth initial data. A survey along this direction for various two-fluid models will be given during this talk.

Pages