- You are here:
- GT Home
- Home
- News & Events

Friday, February 9, 2018 - 10:10 ,
Location: Skiles 254 ,
Marc Härkönen ,
Georgia Tech ,
harkonen@gatech.edu ,
Organizer: Kisun Lee

As a continuation to last week's talk, we introduce the ring D of differential operators with complex coefficients, or the Weyl algebra. As we saw last week, the theory of the ring R, the ring of differential operators with rational function coefficients, is in many ways almost the same as the regular polynomial ring. The ring D however will look slightly different as its structure is much finer. We will look at filtrations, graded rings and Gröbner bases induced by weight vectors. Finally we will present an overview on the integration algorithm of holonomic D-modules and mention some applications.

Friday, February 2, 2018 - 10:10 ,
Location: Skiles 254 ,
Marc Härkönen ,
Georgia Tech ,
harkonen@gatech.edu ,
Organizer: Kisun Lee

Differential operator rings can be described as polynomial rings over differential operators. We will study two of them: first the relatively simple ring of differential operators R with rational function coefficients, and then the more complicated ring D with polynomial coefficients, or the Weyl algebra. It turns out that these rings are non-commutative because of the way differential operators act on smooth functions. Despite this, with a bit of work we can show properties similar to the regular polynomial rings, such as division, the existence of Gröbner bases, and Macaulay's theorem. As an example application, we will describe the holonomic gradient descent algorithm, and show how it can be used to efficiently solve computationally heavy problems in statistics.

Friday, January 26, 2018 - 10:00 ,
Location: Skiles 254 ,
Trevor Gunn ,
Georgia Tech ,
tgunn@gatech.edu ,
Organizer: Kisun Lee

We will first give a quick introduction to automatic sequences. We will then outine an algebro-geometric proof of Christol's theorem discovered by David Speyer. Christol's theorem states that a formal power series f(t) over GF(p) is algebraic over GF(p)(t) if and only if there is some finite state automaton such that the n-th coefficent of f(t) is obtained by feeding in the base-p representation of n into the automaton. Time permitting, we will explain how to use the Riemann-Roch theorem to obtain bounds on the number of states in the automaton in terms of the degree, height and genus of f(t).

Friday, November 17, 2017 - 10:00 ,
Location: Skiles 114 ,
Timothy Duff ,
GA Tech ,
Organizer: Timothy Duff

Motivated by the general problem of polynomial system solving, we state and sketch a proof Kushnirenko's theorem. This is the simplest in a series of results which relate the number of solutions of a "generic" square polynomial system to an invariant of some associated convex bodies. For systems with certain structure (here, sparse coefficients), these refinements may provide less pessimistic estimates than the exponential bounds given by Bezout's theorem.

Friday, November 3, 2017 - 10:00 ,
Location: Skiles 114 ,
Jaewoo Jung ,
GA Tech ,
Organizer: Timothy Duff

We continue our discussion of free resolutions and Stanley-Reisner ideals. We introduce Hochster's formula and state results on the behavior of Betti tables under clique-sums.

Friday, October 27, 2017 - 10:00 ,
Location: Skiles 114 ,
Jaewoo Jung ,
GA Tech ,
Organizer: Timothy Duff

For any undirected graph, the Stanley-Reisner ideal is generated by monomials correspoding to the graph's "non-edges." It is of interest in algebraic geometry to study the free resolutions and Betti-tables
of these ideals (viewed as modules in the natural way.) We consider the relationship
between a graph and its induced Betti-table. As a first step, we look at how operations on graphs effect on the Betti-tables. In this
talk, I will provide a basic introduction, state our result about clique sums of graphs (with proof), and discuss the next things to do.

Friday, October 20, 2017 - 10:00 ,
Location: Skiles 114 ,
Kisun Lee ,
Georgia Institute of Technology ,
Organizer: Timothy Duff

We will introduce a class of
nonnegative real matrices which are called slack matrices. Slack
matrices provide the distance from equality of a vertex and a facet. We
go over concepts of polytopes and polyhedrons briefly,
and define slack matrices using those objects. Also, we will
give several necessary and sufficient conditions for slack matrices of
polyhedrons. We will also restrict our conditions for slack matrices for
polytopes. Finally, we introduce the polyhedral verification
problem, and some combinatorial characterizations of slack matrices.

Friday, October 13, 2017 - 10:00 ,
Location: Skiles 114 ,
Libby Taylor ,
GA Tech ,
Organizer: Timothy Duff

We will give an overview of divisor theory on curves and give
definitions of the Picard group and the Jacobian of a compact Riemann
surface. We will use these notions to prove Plucker’s formula for the
genus of a smooth projective curve. In addition,
we will discuss the various ways of defining the Jacobian of a curve and
why these definitions are equivalent. We will also give an extension
of these notions to schemes, in which we define the Picard group of a
scheme in terms of the group of invertible sheaves
and in terms of sheaf cohomology.