- You are here:
- GT Home
- Home
- News & Events

Series: Combinatorics Seminar

Series: Stochastics Seminar

Series: ACO Student Seminar

We study stable marriage where individuals strategically submit private preference information to a publicly known stable marriage algorithm. We prove that no stable marriage algorithm ensures actual stability at every Nash equilibrium when individuals are strategic. More specifically, we show that any rational marriage, stable or otherwise, can be obtained at a Nash equilibrium. Thus the set of Nash equilibria provides no predictive value nor guidance for mechanism design. We propose the following new minimal dishonesty equilibrium refinement, supported by experimental economics results: an individual will not strategically submit preference list L if there exists a more honest L' that yields as preferred an outcome. Then for all marriage algorithms satisfying monotonicity and IIA, every minimally dishonest equilibrium yields a sincerely stable marriage. This result supports the use of algorithms less biased than the (Gale-Shapley) man-optimal, which we prove yields the woman-optimal marriage in every minimally dishonest equilibrium. However, bias cannot be totally eliminated, in the sense that no monotonic IIA stable marriage algorithm is certain to yield the egalitarian-optimal marriage in a minimally dishonest equilibrium – thus answering a 28-year old open question and Irving's in the negative. Finally, we show that these results extend to student placement problems, where women are polygamous and honest, but not to admissions problems, where women are both polygamous and strategic.
Based on joint work with Craig Tovey at Georgia Tech.

Series: Stochastics Seminar

Series: Analysis Seminar

Series: Dissertation Defense

Dissertation advisor: Luca Dieci

Numerical optimal transport is an important area of research, but most problems are too large and complex for easy computation. Because continuous transport problems are generally solved by conversion to either discrete or semi-discrete forms, I focused on methods for those two.
I developed a discrete algorithm specifically for fast approximation with controlled error bounds: the general auction method. It works directly on real-valued transport problems, with guaranteed termination and a priori error bounds.
I also developed the boundary method for semi-discrete transport. It works on unaltered ground cost functions, rapidly identifying locations in the continuous space where transport destinations change. Because the method computes over region boundaries, rather than the entire continuous space, it reduces the effective dimension of the discretization.
The general auction is the first relaxation method designed for compatibility with real-valued costs and weights. The boundary method is the first transport technique designed explicitly around the semi-discrete problem and the first to use the shift characterization to reduce dimensionality. No truly comparable methods exist.
The general auction and boundary method are able to solve many transport problems that are intractible using other approaches. Even where other solution methods exist, in testing it appears that the general auction and boundary method outperform them.

Series: Geometry Topology Seminar

I will discuss joint work with Hutchings which gives a rigorousconstruction of cylindrical contact homology via geometric methods. Thistalk will highlight our use of non-equivariant constructions, automatictransversality, and obstruction bundle gluing. Together these yield anonequivariant homological contact invariant which is expected to beisomorphic to SH^+ under suitable assumptions. By making use of familyFloer theory we obtain an S^1-equivariant theory defined with coefficientsin Z, which when tensored with Q recovers the classical cylindrical contacthomology, now with the guarantee of well-definedness and invariance. Thisintegral lift of contact homology also contains interesting torsioninformation.

Series: Geometry Topology Seminar

I will describe a diagrammatic classification of (1,1) knots in S^3 and lens spaces that admit non-trivial L-space surgeries. A corollary of the classification is that 1-bridge braids in these manifolds admit non-trivial L-space surgeries. This is joint work with Sam Lewallen and Faramarz Vafaee.

Monday, April 3, 2017 - 14:00 ,
Location: Skiles 005 ,
Prof. Michael Muskulus ,
NTNU: Norwegian University of Science and Technology ,
michael.muskulus@ntnu.no ,
Organizer: Joseph Walsh

This talk addresses an important problem in arctic engineering due to interesting dynamic phenomena in a forced linear system. The nonautonomous system considered is representative of a whole class of engineering problems that are not approachable by standard techniques from dynamical system theory.The background are ice-induced vibrations of structures (e.g. wind turbines or measurement masts) in regions with active sea ice. Ice is a complex material and the mechanism for ice-induced vibrations is not fully clear at present. In particular, the conditions under which the observed, qualitatively different vibration regimes are active cannot be predicted accurately so far. A recent mathematical model developed by Delft University of Technology assumes that a number of parallel ice strips are pushing with a constant velocity against a flexible structure. The structure is modelled as a single degree of freedom harmonic oscillator. The contact force acts on the structure, but at the same time slows down the advancement of the ice, thereby introducing a dynamic nonlinearity in the otherwise linear system. When the local contact force becomes large enough, the ice crushes and the corresponding strip is reset to a random offset in front of the structure.This is the first mathematical model that exhibits all three different dynamic regimes that are observed in reality: for slow ice velocities the structure undergoes quasi-static sawtooth responses where all ice strips fail at the same time (a kind of synchronization phenomenon), for large ice velocities the structure response appears random, and for intermediate ice velocities the system exhibits vibrations at the structure eigenfrequency, commonly called frequency lock-in behavior. The latter type of vibrations causes a lot of damage to the structure and poses a safety and economic risk, so its occurrence needs to be predicted accurately.As I will show in this talk, the descriptive terms for the three vibration regimes are slightly misleading, as the mechanisms behind the observed behaviors are somewhat different than intuition suggests. I will present first results in analyzing the system and offer some explanations of the observed behaviors, as well as some simple criteria for the switch between the different vibration regimes.

Friday, March 31, 2017 - 15:05 ,
Location: Skiles 254 ,
Lei Zhang ,
School of Mathematics, GT ,
Organizer: Jiaqi Yang

In this talk, we will give an introduction to the variational approach to dynamical systems. Specifically, we will discuss twist maps and prove the classical results that area-preserving twist map has Birkhoff periodic orbits for each rational rotation number.