Learning Combinatorial Structures

ACO Student Seminar
Friday, October 12, 2018 - 1:05pm
1 hour (actually 50 minutes)
Skiles 005
ISyE, Georgia Tech
At the heart of most algorithms today there is an optimization engine trying to learn online and provide the best decision, for e.g. rankings of objects, at any time with the partial information observed thus far in time. Often it becomes difficult to find near optimal solutions to many problems due to their inherent combinatorial structure that leads to certain computational bottlenecks. Submodularity is a discrete analogue of convexity and is a key property often exploited in tackling combinatorial optimization problems. In the first part of the talk, we will focus on computational bottlenecks that involve submodular functions: (a) convex function minimization over submodular base polytopes (for e.g. permutahedron) and (b) movement along a line inside submodular base polytopes. We give a conceptually simple and strongly polynomial algorithm Inc-Fix for the former, which is useful in computing Bregman projections in first-order projection-based methods like online mirror descent. For the latter, we will bound the iterations of the discrete Newton method which gives a running time improvement of at least n^6 over the state of the art. This is joint work with Michel Goemans and Patrick Jaillet. In the second part of the talk, we will consider the dual problem of (a), i.e. minimization of composite convex and submodular objectives. We will resolve Bach's conjecture from 2015 about the running time of a popular Kelley's cutting plane variant to minimize these composite objectives. This is joint work with Madeleine Udell and Song Zhou.