A Fast Global Optimization-Based Approach to Evolving Contours with Generic Shape Prior

Applied and Computational Mathematics Seminar
Monday, January 14, 2013 - 14:00
1 hour (actually 50 minutes)
Skiles 005
University of Bergen, Department of Mathematics, Norway
In this talk, we present a new global optimization based approach to contour  evolution, with or without the novel variational shape constraint that imposes a generic star shape using a continuous max-flow framework. In theory, the proposed continuous max-flow model provides a dual perspective to the reduced continuous min-cut formulation of the contour evolution at each discrete time frame, which proves the global optimality of the discrete time contour propagation. The variational analysis of the flow conservation condition of the continuous max-flow model shows that the proposed approach does provide a fully time implicit solver to the contour convection PDE, which allows a large time-step size to significantly speed up the contour evolution. For the contour evolution with a star shape prior, a novel variational representation of the star shape is integrated to the continuous max-flow based scheme by introducing an additional spatial  flow. In numerics, the proposed continuous max-flow formulations lead to efficient duality-based algorithms using modern convex optimization theories. Our approach is implemented in a GPU, which significantly improves computing efficiency. We show the high performance of our approach in terms of speed and reliability to both poor initialization and large evolution step-size, using numerous experiments on synthetic, real-world and 2D/3D medical images.This talk is based in a joint work by: J. Yuan, E. Ukwatta, X.C. Tai, A. Fenster, and C. Schnorr.