The Polaron Hydrogenic Atom in a Strong Magnetic Field

Series
Dissertation Defense
Time
Thursday, May 2, 2019 - 11:00am for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Rohan Ghanta – School of Mathematics – rghanta3@math.gatech.edu
Organizer
Rohan Ghanta

An electron interacting with the vibrational modes of a polar crystal is called a polaron. Polarons are the simplest Quantum Field Theory models, yet their most basic features such as the effective mass, ground-state energy and wave function cannot be evaluated explicitly. And while several successful theories have been proposed over the years to approximate the energy and effective mass of various polarons, they are built entirely on unjustified, even questionable, Ansätze for the wave function. 

In this talk I shall provide the first explicit description of the ground-state wave function of a polaron in an asymptotic regime: For the Fröhlich polaron localized in a Coulomb potential and exposed to a homogeneous magnetic field of strength $B$ it will be shown that the ground-state electron density in the direction of the magnetic field converges pointwise and in a weak sense as $B\rightarrow\infty$ to the square of a hyperbolic secant function--a sharp contrast to the Gaussian wave functions suggested in the physics literature.