The Local L^p Brunn-Minkowski inequality for p<1

Series
High Dimensional Seminar
Time
Wednesday, October 3, 2018 - 12:55pm for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Xingyu Zhu – Georgia Institute of Technology – xyzhu@gatech.edu
Organizer
Galyna Livshyts

The n-dimensional L^p Brunn-Minkowski inequality for p<1 , in particular the log-Brunn-Minkowski inequality, is proposed by Boroczky-Lutwak-Yang-Zhang in 2013, based on previous work of Firey and Lutwak . When it came out, it promptly became the major problem in convex geometry. Although some partial results on some specific convex sets are shown to be true, the general case stays wide open. In this talk I will present a breakthrough on this conjecture due to E. Milman and A Kolesnikov, where we can obeserve a beautiful interaction of PDE, operator theory, Riemannian geometry and all sorts of best constant estimates. They showed the validity of the local version of this inequality for orgin-symmtric convex sets with a C^{2} smooth boundary and strictly postive mean curvature, and for p between 1-c/(n^{3/2}) and 1. Their infinitesimal formulation of this inequality reveals the deep connection with the poincare-type inequalities. It turns out, after a sophisticated transformation, the desired inequality follows from an estimate of the universal constant in Poincare inequality on convex sets.