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Introduction

This is a problem based course. You are expected to

1. Solve problems (primarily from the text by Curtis),

2. Compose detailed explanations of your solutions, and

3. Present your explanations on the board in class.

Points will be assigned to each problem and you will receive points for yor
presentation based on correctness, clarity and efficiency (or elegance).

One comment on detail. Traditional lectures are not a prominent part of
this course. It will be necessary for you to read the text on your own in order to
acquire the needed information to solve the problems. It is a nicely written text;
this activity should become routine with some practice. You are also required,
however, to explain clearly what information from the text was needed to solve
a problem.

Tuesday May 15, 2012

For the moment, I’m just putting something here from a past semester for you
to read. You can also have a look at my notes on algebraic abstractions posted
on the webpage.

1.2.1 A system of linear equations looks like

{

x + y = 4
2x − 2y = 4

This is a “two-by-two” system; two equations in two unknowns. The “row
picture” consists of plotting the two lines represented by each equation
individually. For the column picture, one lines up the two equations and
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Figure 1: The Row Picture and the Column Picture.

considers the vectors formed by the coefficients:

x

(

1
2

)

+ y

(

1
−2

)

=

(

4
4

)

.

It is easily checked that putting x = 3 and y = 1 in this vector equation
works.

Remark Strang builds his text around solving systems of linear equations;
for him, this is the main point of linear algebra.

1.2.1* If you change the first row, i.e., change the first plane, what is the change
in the column vectors? If you vary the columns, what is the change in the
row picture? Can you see a geometric or mechanical relation between the
two?

Motivation

As mentioned just above, many teachers of linear algebra consider systems
of linear algebraic equations as the primary motivation for linear algebra.
(See for example the first sentence of Curtis’ Preface.) I mentioned in class
also that, as an undergraduate, I found that motivation rather uninspiring.
I still do find it uninspiring to a certain extent.
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I do find the subject pretty interesting, however. But the reason I find it
interesting is a bit more complicated than just studying systems of linear
algebraic equations.

As I have time, I will try to type in some notes on my motivation for
studying linear algebra as I outlined it in class. What I would like to get
across is built around the following:

1. I want to understand general “mappings” from Rn → Rm where n
and m are integers. One nontrivial basic case to consider is when
n = m = 2; these are maps of the plane into itself.

2. There is a way to “localize” or “linearize” the behavior of such a
map. That is, there is a way to view the behavior of the map near a
single point in some simplified way. (We know how to do this for real
valued functions of one real variable from calculus; this is basically
the definition of the derivative.)

3. For mappings of higher dimensional spaces, it is also possible to build
simplified maps. They are linear maps built out of matrices contain-
ing the first (partial) derivatives of the original (nonlinear) map at a
point.

4. The general class of linear maps, i.e., maps determined by matrix
multiplication, is interesting and somewhat nontrivial to understand.

Maybe we should start with a review of something in my second point
above. If you have a real valued function of one real variable, then we
are accustomed to “graph the function.” Actually, “graph” is more prop-
erly used in mathematics as a noun rather than a verb. The graph of a
function is the set of all ordered pairs with first element in the domain of
the function and second element given by the value of the function. In
symbols, if f is a function with domain A, then the graph of f is

{(x, f(x)) : x ∈ A}.

This point set is important because the derivative of a function at a point
x0 in it’s domain is interpreted as the slope of the line which is tangent to
the graph of the function at the point (x0, f(x0)).

It’s worth taking a few minutes of your time to see if you agree with
that interpretation and why. (In order to do this properly, you’ll need to
remember, or look up, the definition of derivative, which I’m not giving
you here.)

Closely related to that interpretation (picture) and the definition is the
idea of approximation. That is to say, we can write down an expression
for the function ℓ which gives the tangent line at (x0, f(x0)), and that can
be interpreted as an approximation for the function f for domain values
near x0. Again, in symbols

f(x) ≈ ℓ(x) = f(x0) + f ′(x0)(x − x0).
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Now, I want to bring in an idea which may be new to you:

This is a recipe for “building” a function ℓ which approximates
f near a given point. That function ℓ is “built” out of two or
three fixed things, namely

1. The given point x0,

2. The value of f at the given point, and

3. The derivative of f at the given point.

We want to emphasize the last one: The approximation is mainly
built out of the derivative value f ′(x0).

Another point which is important in this discussion is that we want to
emphasize the structure of the approximation. It is called a linear ap-
proximation. This can be a bit confusing because the function ℓ is not
linear in general. Let me explain a bit more.

Always and forever, any function Λ which is linear will satisfy

1. Λ(v + w) = Λ(v) + Λ(w), and

2. Λ(cv) = cΛ(v).

When we write this, v and w are vectors in the domain of Λ and c is a
scalar.

Today was mostly an administrative day. We did hit some nice points,
however:

1. Linearity means Λ(v + w) = Λ(v) + Λ(w) and Λ(cw) = cΛ(w).

2. Linear maps L : Rn → Rm are given by matrix multiplication with
the columns of the matrix given by the images of the standard basis
vectors.

3. We talked a little about fields.

Next time I’m looking forward to having you show me what you can do.

Thursday May 17, 2012

(2.12)* on page 13 (Jevon R.) ab = ac implies b = c as long as a 6= 0.

Proof: Multiply both sides by a−1.

1.2.1(a) (Gautam G.) The sum of the first n odds is n2. We had a discussion
of proof by induction. In summary, verify your assertion A(n) for n = 1
and then show that

A(k) implies A(k + 1).

Then you’ve proved that A(n) holds for n = 1, 2, 3, . . ..
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1.2.1(b) (David G.) Formula for the sum of the squares of the first n integers.

Well Ordering (Kowshik M.) The Well Ordering Principle (that every nonempty
subset of nonnegative integers has a least element) implies the Principle of
Mathematical Induction (which was proved in the following form: If a set
S contains 1, and whenever you have k ∈ S, then you also have k +1 ∈ S,
then S = {1, 2, 3, . . .}.

The proof was nice. Let T = N\S, and assume T 6= φ. By the Well
Ordering Principle, there is a smallest element a ∈ T . Clearly, a 6= 1,
since 1 ∈ S. Therefore, k = a−1 ≥ 1 is an integer, and also k = a−1 /∈ T
since a is the smallest one. So, k ∈ S, but then k + 1 = a ∈ S which is a
contradiction.

1.2.3 (Aishwarye C.) This is the binomial expansion for an arbitrary field.

Let’s see. When n = 1, you just have

(a + b)1 =

(

1
0

)

a1 +

(

1
1

)

b1

which is true.

Next, assuming

(a + b)k =

k
∑

j=0

(

k
j

)

ak−jbj

we see that

(a + b)k+1 = (a + b)(a + b)k

= a

k
∑

j=0

(

k
j

)

ak−jbj + b

k
∑

j=0

(

k
j

)

ak−jbj

=

k
∑

j=0

(

k
j

)

ak−j+1bj +

k
∑

j=0

(

k
j

)

ak−jbj+1

=

(

k
0

)

ak+1 +

k
∑

j=1

(

k
j

)

ak+1−jbj +

k−1
∑

j=0

(

k
j

)

ak−jbj+1 +

(

k
k

)

bk+1

=

(

k + 1
0

)

ak+1 +
k
∑

j=1

(

k
j

)

ak+1−jbj +
k
∑

j=1

(

k
j − 1

)

ak+1−jbj +

(

k + 1
k + 1

)

bk+1

=

(

k + 1
0

)

ak+1 +

k
∑

j=1

[(

k
j

)

+

(

k
j − 1

)]

ak+1−jbj +

(

k + 1
k + 1

)

bk+1

=

k+1
∑

j=0

(

k + 1
j

)

ak+1−jbj .
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2.3.5 (Claudia R. with a bit of help from Aishwarye C.) AB = −BA Proof:
AB = B − A = −(A − B) since (B − A) + (A − B) = 0. But then
−(A − B) = −BA (by definition).

2.3.6 (Dustin M.) AB = CD if and only if there is some X with C = A + X
and D = B + X . (Translation)

Well, if C = A+X and D = B+X , then CD = D−C = B+X−(A+X) =
B − A = AB. So that direction is OK.

Conversely, if AB = B − A = D − C = CD, then we can add C and
subtract B from both sides of the inner identity B−A = D−C to obtain

C − A = D − B.

Let X be this common value. In particular, C − A = X , so C = A + X .
Similarly, D − B = X , so D = B + X .

2.3.9 (Sarah M.) If AB = CD, then AC = BD.

Let’s see. We are given B − A = D − C. Adding C to both sides and
subtracting B from both sides, we get C − A = D − B. That’s what we
want.

Tuesday May 22, 2012

2.4.10 (Dustin M.) As pointed out in class, Curtis seems to have made a mis-
take on this one. What he probably meant to say was Any finite collection
of vectors which contains a set of linearly dependent vectors is linearly de-
pendent.

A reasonable proof of this fact, according to his definition might go like
this:

Let the superset be called S and let the vectors in the linearly dependent
subset be v1, . . . , vk. By the definition of linear dependence, there are
constants a1, . . . , ak not all zero with

k
∑

j=1

ajvj = 0.

We can denote the remaining vectors in S (if there are any) by vk+1, . . . , vn.
We need to show that this set is linearly dependent too. Just take ak+1 =
· · · = an = 0. Then it is clearly the case that

n
∑

j=1

ajvj = 0.

It is also clear that not all of the coefficients are zero, so we are done. 2

There are a couple things to note:
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1. It is really important to read the text carefully and critically, espe-
cially the definitions.

2. Taking the problem just as stated in the book, it is easy to give a
counterexample as follows: If we are going to show that any such set
is linearly dependent, then we must show it is finite. So all we need
for a counterexample is a set which is infinite but contains a linearly
dependent (finite) subset. Such an example is R which is a vector
space over the field R. A finite linearly dependent subset is {0}.

3. Really, it is useful to have a definition of linear dependence for an
arbitrary set of vectors. The easiest way is to use Curtis’ definition
as a start and then say:

Any set of vectors is linearly dependent if it contains some
finite linearly dependent subset.

This definition makes Curtis’ problem trivial, but that is his problem.
One should also check that the two definitions we have for linearly
dependent are consistent. That is, the second definition shouldn’t
rule out or rule in any finite sets ruled out or ruled in respectively by
the first definition.

4. There is still the question about an analogous statement for linearly
independent vectors. I don’t think we’ve nailed that one yet.

5. Also, it’s a bit irritating to have a first definition for finite sets of
vectors, and then a generalization of it. Can you give a definition
that works for arbitrary sets from the start?

2.5.2 (David G.) Three vectors in R2 are linearly dependent.

We don’t seem to have a solution here yet.

Let x = (x1, x2), y = (y1, y2), and z = (z1, z2).

Obviously, if one of these vectors is the zero vector, then I can take a
nonzero multiple of that one and zero multiples of the others to get the
zero vector written as a nontrivial linear combination of the three, and we
are done.

If any one of the first components is zero, we can assume it is the first
one. Then our life is a little simpler. We’re loooking at

x = (0, x2), y = (y1, y2), and z = (z1, z2).

How about you show those three vectors are linearly dependent?

administrative I forgot to mention that we can have some homework problems
graded. That’s probably a good idea. I’ll start assigning problems for you
to work and turn in on Tuesdays starting in a week or so. Here’s the first
set: 1.2.4, 5; 2.3.1, 2, 10; 2.4.4, 4, 6, 7; 2.5.4, 5. (If you work them in class,
then they don’t need to be turned in.)
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Thursday May 24, 2012

2.5.2 (Xian W., Noah C., Richard R.)

This problem still remains open. (See the discussion above.) Xian tried
to use the fact that the column rank of a matrix is less than or equal to
the row rank of a matrix and observed that the row rank of

(

x1 y1 z1

x2 y2 z2

)

can be at most two. Therefore the row rank can be at most two as well,
and the three vectors must be linearly dependent. Modulo the definitions
of row and column rank (and matrices) which we’ll get to in due time,
this is basically correct reasoning. However, Xian was unable to provide
a proof of the fact that column rank cannot exceed row rank.

Noah tried to use Theorem 5.3, and Sarah pointed out that Theorem 5.1
applies more directly. This approach is also correct in principle but was
disallowed on the basis that we haven’t gone through the proof of Theo-
rem 5.1 and the problem explicitly says to give a proof “from the defini-
tions,” which means roughly that you’re not allowed to quote Theorem 5.1.

Richard returned to David’s approach, but wasn’t able to convince us.

2.4.5 (Omar V.) The set

Σ = {(x1, x2, x3) ∈ R3 : x1 − x2 + x3 = 0}

is a subspace and has a basis given by {(1, 1, 0), (1, 0,−1)}.

Let’s first show that every (x1, x2, x3) ∈ Σ is a linear combination of the
vectors in our proposed basis. In fact,

x2(1, 1, 0) − x3(1, 0,−1) = (x2 − x3, x2, x3) = (x1, x2, x3)

with the last equality holding because x2 − x3 = x1 (according to the
definition of Σ). Thus, Σ is a generating set.

We also need to show linear independence. If a(1, 1, 0) + b(1, 0,−1) =
(a + b, a,−b) = (0, 0, 0), then looking at the second and third components
gives a = 0 and b = 0.

You should make sure you know how to write down the details of the
assertion that Σ is a subspace.

2.6.5(a) and parts of 2.5.3 (Peter Y.)

Tuesday May 29, 2012

2.5.2 (David G.) I think we made a little progress today, but we’re not quite
there. What we have is something like this:
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If one of the vectors (see notation above) is the zero vector, then we know
the three vectors are linearly dependent because we can take the coefficient
of the zero vector to be 1 and the other two coefficients to be zero. Thus,
we can always assume that none of the vectors are the zero vector.

Next, if all the first components are zero (we called this something like
CASE 0.), then none of the second components, x2, y2, or z2, can be
zero. Then, you can check that 0v1 − z2v2 + y2v3 = 0, and the last two
coefficients are nonzero, so we’re done.

Thus, if we’re not in CASE 0, then by rearranging if necessary, we can
always assume that x1 6= 0. With this understanding, we come to

CASE 1. x1y2 − y1x2 6= 0.

First remember that we are already assuming here that x1 6= 0, so this is
some kind of assumption on the interaction of the components of the first
two vectors. In any case, it was observed that

v2 −
y1

x1
v1 =

x1y2 − y1x2

x1
(0, 1)

and

v3 −
z1

x1
v1 =

x1z2 − z1x2

x1
(0, 1).

Therefore, setting µ = −(x1z2 − z1x2)/(x1y2 − y1x2), we have

µ

(

v2 −
y1

x1
v1

)

+ v3 −
z1

x1
v1 = (0, 0).

But this means

−

(

µy1

x1
+

z1

x1

)

v1 + µv2 + v3 = (0, 0).

Since that last coefficient (on the v3 is 1 6= 0), this means {v1, v2, v3} is
linearly dependent as desired.

But I guess there’s one more case that we havne’t handled. Next time?

2.6.5 (Peter Y.) Here we are looking at the polynomials x2 +2x+1, 2x+1 and
2x2 − 2x − 1 in the vector space of polynomials of order no more than 2
over, for example, the reals.

As I pointed out in class last time, the easiest way to think about this
vector space is in terms of “formal” polynomials. That is, you define
arithmetic (adding polynomials and scalar multiplication) in the usual
way, and think of x as always a symbolic variable, i.e., a bookkeeping
placekeeper. In particular, equality for two polynomials means that you
“collect like terms” in each and equate the coefficients.

(There is an alternative in which, for example, equality of two polynomials
p(x) and q(x) is defined as having p(x) = q(x) for every x in the field.
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Then you prove that equality of polynomials is equivalent to equality of
the coefficients. This is a fine definition and way to look at polynomials,
but it is a bit more work—which you are welcomed to do.)

With our definition of “formal polynomials” in x, the space spanned by
{1, x, x2} is essentially equivalent to R3 which of course is spanned by
e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1).

Peter’s solution was to form coefficient vectors from the polynomials and
assemble them into a matrix:





1 2 1
1 2 0

−1 −2 2





As mentioned, the space is like R3 (or F3) and this really makes it look like
that. In particular, Peter pointed out that the linear dependence/independence
of the three polynomials is equivalent to the dependence/independence of
the three row vectors in the matrix.

Peter then introduced ”elementary row operations.” There were three of
them:

• Interchange two rows: ri ↔ rj ,

• Replace a row with a nonzero multiple of itself: ri → µri,

• Replace a row with itself plus a nonzero multiple of a different row:
ri → ri + µrj .

Two matrices are said to be row equivalent if one can be obtained from the
other by a (finite) sequence of elementary row operations. Initially, this is
defined asymetrically, i.e., as “one matrix is equivalent to a second if...”
Then you have to show that the relation is symmetric. In fact, there are
three properties that make it a bona fide “equivalence relation.” These
properties are the following:

• A ∼ A (reflexive),

• A ∼ B implies B ∼ A (symmetric),

• A ∼ B and B ∼ C implies A ∼ C (transitive).

We checked these things informally and talked a bit about the concept of
“concatenation” in connection with the transitive property. It was pointed
out that there is a reasonably tidy little theory of equivalence relations that
is worth learning about. The main thing to know is about “equivalence
classes.” I think this is in your book, so we should go over it. If not, it
may be found in a text like Halmos’ “Naive Set Theory” and we should
go over it. Since the full theory of equivalence relations is (apparently)
not needed for the problem at hand, we’ll let Peter off the hook for the
moment.
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Peter then quoted some theorem (Theorem 6.16?—I don’t have the book
in front of me). The theorem asserted, among other things, that if the
matrix you have is row equivalent to one with a row of zeros, then the row
vectors you started with were linearly dependent. We should probably
make him prove at least that part of the theorem.

He proceeded to “row reduce” the matrix and got a row of zeros, so he
was, more or less, done. I didn’t record the row reduction, but we should
all be able to do that sort of thing, so let’s see if I can do it:





1 2 1
1 2 0

−1 −2 2





r2→r2−r1,r3→r3+r1

−−−−−−−−−−−−−−→





1 2 1
0 0 −1
0 0 3





r3→r3+3r2−−−−−−−→





1 2 1
0 0 −1
0 0 0



 .

There’s a row of zeros, so if I’ve done the reduction correctly, the original
rows are linearly dependent (according to the theorem).

Actually, the theorem was a little more complicated than I have indicated,
and maybe also required that the first two rows were in “echelon form,”
i.e., they were nonzero and each has first nonzero coefficient strictly to the
right of the first nonzero coefficient of the previous row. You can see that
I also happen to have gotten “echelon form” for the first two rows.

There was also some discussion about whether or not a matrix is just an
ordered set of vectors (presumably of the same length). Apparently, there
is some such definition in your text, and technically that might even be
“the” way to define a matrix. But I don’t think of a matrix that way. If
I happen to “assemble” a matrix from a collection of row vectors, then I
think of the matrix as a fundamentally new kind of object. But that’s just
me. My definition of a matrix would be that it is a “rectangular array” of
elements. Then it has separate collections associated with it containing,
for example, its rows or its columns.

There are a couple things it would be good to understand better.

One is the relation between elementary row operations and linear combi-
nations of the rows. (It seems evident that there must be some relation.)

More broadly, it would be good to understand that theorem Peter quoted.

More specifically, it would be nice to be able to read off the coefficients of
a linear combination which expresses the linear dependence/independence
of the three vectors from the row reduction.

When I say “understand” a theorem, I almost always mean understand its
proof, i.e., why the theorem is true. Of course, it takes some work just to
understand the statement of a theorem, and it’s good to understand what
theorems say and how to use them correctly. But it’s even better if you
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understand the proof. And that is, to a large degree, what this course is
about.

Finally, let me try to give a shorter proof:

Since none of the three polynomials is a multiple of any other one, we see
that each pair of them spans a two dimensional subspace. Since

−2(x2 + 2x + 1) + (2x2 − 2x − 1) = −3(2x + 1)

We see that the middle polynomial is in the span of the first and third.
In particular, the three are linearly dependent.

Since all the coefficients in the above relation are nonzero, it also says that
any one of these polynomials can be expressed as a linear combination of
the other two.

2.6.1 (Xian W.) This was, as I recall, just doing some row reductions. I assume
everyone can do this kind of thing. If you don’t feel like you can do it—or
maybe even more importantly, if you feel like you can, but you can’t—then
it’s is hereby your responsibility to learn how to do it.

This brings up a point about philosophy of teaching which might interest
you. In my view, students have two primary responsibilities:

• Learn the material/master the skills in the course, and

• Communicate to the teacher that they understand the material and
have mastered the skills.

Teachers also have two (main) responsibilities:

• Help the students learn the material, and

• Evaluate the students progress.

Of these four responsibilities, the most important one is the first one, and
the burden (you’ll note) falls on the student. It is very easy for “teaching”
to be replaced with “busy work,” i.e., stuff students can do to get an
evaluation indicating they have learned/mastered the material when, in
fact, they havent. I’m not into busy work, though sometimes I have been
administratively required to assign it. For example, in some courses I’ve
taught, the administrator has required that some specific percentage of
the grade (say 15%) be based on attendance. So the student can show
up to class and surf the internet and get credit for it. This really hurts
the students in the long run, I think, but it seems to make a lot of people
(students and administrators) happy.

Administrative: Let’s include a final set of problem 2.6.1-4, and all the
ones above and these will be due Tuesday June 5, 2012. I’ll put them on the
schedule page too. Let’s make a goal of trying to understand everything
up to section 2.6 by that same date. That’s a good bit of material, but
let’s give it a try.
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Thursday May 31, 2012

2.5.2 (David G.) CASE 2: x1y2 = x2y1.

If any one of the entries of v1 or v2 is zero, then notice that the common
value of x1y2 = x2y1 is also zero. Since x1 6= 0, this means y2 = 0 which
in tern means y1 6= 0 and, hence, x2 = 0. In this case, it is easy to check
that

v1/x1 − v2/y2 + 0v3 = (0, 0)

and since the first two coefficients are nonzero, we are done.

The final possibility is that none of the components of v1 or v2 vanishes.
In this case, x1/x2 = y1/y2, and

v1/x2 − v2/y2 + 0v3 = (x1/x2, 1) − (y1/y2, 1) = (0, 0),

so again we reach the same conclusion. 2

Remark: This problem is closely related to the proof of Theorem 5.1. Can
you further clarify the connection? In particular, how would David’s so-
lution be modified to parallel the proof given in the text of Theorem 5.1?
What characteristics do they have in common and where does the reason-
ing differ?

2.7.3 (Richard R.) Every subspace of a finitely generated space is finitely gen-
erated and the subspace will have strictly smaller dimension unless the
subspace equals its superspace.

We ran into trouble on this one partially because we do not yet know that
dimension, i.e., the number of elements in a basis, is well defined. This is
Theorem 5.3. Another problem was that we don’t yet really understand
Theorem 7.2: Every finitely generated vector space has a (finite) basis.

We did go over most of the definitions and technicalities to make sense
of these questions. In particular, we should know what is meant by a
generating set and finitely generated.1 To be precise,

a subset G of a vector space is said to be a generating set if
every vector in the vector space can be expressed as a linear
combination of vectors in G.

And...

A vector space is said to be finitely generated if it contains a
generating set with finitely many elements.

Once we have these down, we can see that

A basis B of vector space is a a linearly independent generating
set.

1In order to understand these concepts, it is important to understand what is meant by

linear dependenc/independence and a linear combination.
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Theorem 5.3 asserts that every finite basis has the same number of ele-
ments. Once that is known, that number of elements is the dimension of
the vector space.

I think those are most of the relevant definitions. We seemed to get stuck
pretty quickly on the proposition that a subspace of a finitely generated
space is finitely generated due to the fact that the generators for the bigger
space are not necessarily in the smaller space. Thus, it seems we are forced
to somehow build a generating set in the smaller space, and it’s not so
obvious how to do that.

2.4.8 (Xian W.) This problem asks if it is always true that the union of vector
subspaces is a subspace. An example suffices to answer the question: The
span of e1 is the x-axis in R2 which is a subspace and the span of e2 is
the y-axis which is another subspace. But the union is not closed under
addition since e1 + e2 = (1, 1) is not in the union.

Xian went further to generalize this observation: The union is a subspace
if and only if one of the subspaces is a subspace of the other.

The key is to show that when neither is a subset of the other, then the
union is not a subspace. Let the subspaces be X and Y and take x ∈ X\Y
and y ∈ Y \X . Then x + y = z is not in the union because if we assumed
that z ∈ X , then y = z − x ∈ X which contradicts the fact that y /∈ X .
Similarly, assuming z ∈ Y leads to the contradictory statement x ∈ Y . 2

2.5.1 (Liangyi S.) If {b1, . . . , br} is a basis for V , then none of the basis elements
is the zero vector.

Assume one of the basis elements bi0 is the zero vector, then taking zero
coefficients for all the other basis elements and coefficient 1 for bi0 , we get
a linear combination of the basis elements

∑

i6=i0

0 · bi + 1 · bi0 = 0

which expresses the zero vector but has a nonzero coefficient. This shows
that {b1, . . . , br} is a linearly dependent set of vectors and, thus, contra-
dicts the fact that a set of basis vectors is linearly independent. 2

Remarks: (1) This really shows that the zero vector cannot be in any
linearly independent set.

(2) We were in good shape because we used the multiplicative identity as
the coefficient of bi0 and the zero in the field as the other coefficients. In
this way, we could use the last axiom for vector spaces (Definition 3.1)
and assertion (iv) from Theorem 3.5 to see that our linear combination
simplified to be the zero vector.

You should, of course, check the proof of Theorem 3.5, and there is at
least one technical property of vectors which doesn’t seem to be listed
there and you might try to prove it:

Can you show that any scalar times the zero vector is the zero vector?
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Tuesday June 5, 2012

Row Reduction (Gautam G.) Gautam showed that the span of the rows of
a matrix is unchanged under elementary row operations. Recall that the
span of a collection of vectors is defined to be the collection of all (finite)
linear combinations of those vectors. I don’t think we have gone through
the proof, but it can be shown (and you should check it) that the span of
any collection of vectors is a vector space. In the particular case in which
the vectors you are taking the span of are the rows of a matrix, then the
resulting vector space is called the row space.

In any case, it is pretty clear that if you change the order of the rows, the
row space of the resulting matrix is the same. Also, if you multiply a row
by a nonzero constant, that doesn’t change the span either.

Let’s check that the span doesn’t change if we replace the i-th row ri with
ri + crj . It’s clear that a linear combination of the new rows

∑

k 6=i

akrk + ai(ri + crj)

is a linear combination of the old rows:
∑

k 6=j

akrk + (aj + cai)rj .

Conversely, if we take a linear combination of the old rows

∑

akrk,

then we can define coefficients bk as follows:

{

bk = ak for k 6= j
bj = aj − cai.

Then the linear combination of the new rows

∑

k 6=i

bkrk + bi(ri + crj) =
∑

k 6=i,j

akrk + (aj − cai)rj + airi + cairj =
∑

akrk

is what we want, namely the linear combination of the old rows with which
we started. 2

Gautam also noted that the nonzero rows in a matrix in echelon form are
linearly independent. Thus he concluded that one can find a basis for
the row space of a matrix by row reducing the matrix to echelon form
(which can always be done) and then taking the nonzero rows as the
basis. (Technically, one might need to say that only the nonzero rows are
in echelon form, but the terminology I’ve used is common.)

15



c ·~0 = ~0 (Liangyi S.) This is a property of vector spaces which should be in
Theorem 3.5 but is not there.

c ·~0 = c ·~0 +~0 (3.1 − 2)

= c ·~0 + (c ·~0 − c ·~0) (3.1 − 3)

= (c ·~0 + c ·~0) − c ·~0 (associative)

= c(~0 +~0) − c ·~0 (3.1 − 1)

= c ·~0 − c ·~0 (3.1 − 2)

= ~0 (3.1 − 3).

2.6.4(c) (Claudia R.) We want to show that −x2 + x + 1, x2 + 2x, and x2 − 1
are linearly independent as functions. This means that if we know

λ1(−x2 + x + 1) + λ2(x
2 + 2x) + λ3(x

2 − 1) = 0 (1)

for every x ∈ R, then λ1 = λ2 = λ3 = 0. To see that this is the case, we
can first take x = 0 to find that λ1 − λ3 = 0. Thus, replacing λ3 with λ1

in the original condition (1), we find

λ1x + λ2(x
2 + 2x) = 0 (2)

for every x ∈ R. Next, we can take x = −2 to find that λ1 = 0. But then
taking x = −1, we have −λ2 = 0. It follows that λ1 = λ2 = λ3 = 0 and
we are done.

2.6.4(a) (Xian W.) Here we are given three real valued functions f1, f2, and f3

of a real variable, and three points x1, x2, and x3. If you find out that the
3×3 matrix with i-th row given by (fi(x1), fi(x2), fi(x3)) has three linearly
independent rows, then the three functions are linealry independent.

Assume not, then there are three constants λ1, λ2, and λ3, not all zero
for which

∑

λifi(x) = 0

for every x ∈ R. In particular, this means that for each j

∑

i

λifi(xj) = 0.

Therefore, letting ri denote the i-th row of the matrix, we have

∑

i

λiri =

(

∑

i

λifi(x1),
∑

i

λifi(x2),
∑

i

λifi(x3)

)

= (0, 0, 0).

This means {r1, r2, r3} is a linearly dependent set and contradicts the
assumption that {r1, r2, r3} is a linearly independent set. 2

16



Thursday June 7, 2012

2.6.4(b) (Gautam G.) With notion as in the previous problem we assume here
that the three functions are twice differentiable. If there is some x∗ for
which the matrix with i-th row

ri = (fi(x∗), f
′
i(x∗), f

′′
i (x∗))

has linearly independent rows, then the three functions are linearly inde-
pendent.

We again proceed by contradiction. Again, we assume there are three
constants λ1, λ2, and λ3, not all zero for which

∑

λifi(x) = 0

for every x ∈ R. Differentiating with respect to x and evaluating at x = x∗,
we find

∑

λif
′
i(x∗) = 0.

Similarly, differentiating twice with respect to x, we find

∑

λif
′′
i (x) = 0

for every x ∈ R. Evaluating at x∗, we get

∑

λif
′′
i (x∗) = 0.

Thus,

∑

i

λiri =

(

∑

i

λifi(x∗),
∑

i

λif
′
i(x∗),

∑

i

λif
′′
i (x∗)

)

= (0, 0, 0).

Again this means {r1, r2, r3} is a linearly dependent set and contradicts
the assumption that {r1, r2, r3} is a linearly independent set. 2

The Replacement Lemma (Theorem 7.4) and Theorems 5.1 and 5.3
(Kowshik M.) This is a pretty neat result. It says that if we have some
vectors v1, v2, . . . , vk and some linearly independent vectors w1, w2, . . . , wℓ

in the span of the vj , then first of all k ≥ ℓ, and we can find a subcollection
A′ of A = {v1, v2, . . . , vk} with ℓ elements such that

B = {w1, w2, . . . , wℓ} ∪ (A\A′)

spans the same vector space as A.

The proof is by what you might call “finite induction” or “exhaustive
induction.” This works like induction, except there are really only finitely
many cases to check.

17



The initial thing to prove is that we can replace one of the v’s. In fact,
since

w1 =
∑

ajvj

for some constants aj , and we know w1 is nonzero, it must be the case that
some aj0 6= 0. It is pretty clear, of course, that the span of {w1} ∪ {vj :
j 6= j0} is in the span of the original vj ’s. (Just look at the form of w1

above.)

On the other hand, we have

vj0 =
1

aj0



w1 −
∑

j 6=j0

ajvj



 =
1

aj0

w1 −
∑

j 6=j0

aj

aj0

vj .

(Just look at the form of w1 above.) Therefore, anything in the span of
the original vj ’s has the form

∑

cjvj =
∑

j 6=j0

cjvj + cj0





1

aj0

w1 −
∑

j 6=j0

aj

aj0

vj



 .

Regrouping, we get

∑

cjvj =
∑

j 6=j0

(

cj −
cj0aj

aj0

)

vj +
cj0

aj0

w1.

That is to say,
∑

cjvj is in the span of the modified collection of vectors.

It will be noted that the main thing we used in the replacement procedure
above was that one of the coefficients of one of the vj ’s was nonzero.
And the same reasoning will work to replace other vectors as long as
this is the case. To be more precise, say we have already replaced a set
A′ = {v′1, . . . , v

′
m} of the vectors in A where 1 ≤ m < ℓ, and we want to

replace one more.

First of all, there must be more vectors in A\A′ to replace. To see this,
note that

wm+1 =

m
∑

j=1

bjwj +
∑

ajvj

where the second sum is taken over vectors vj ∈ A\A′. If all the coefficients
aj were zero, or there were no more vj , then we would have

m
∑

j=1

bjwj − wm+1

which contradicts the linear independence of the wj .
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From this point, we can take j0 with vj0 ∈ A\A′ and aj0 . Then we’ll set
A′′ = A′ ∪ {vj0}, and show that

span ({w1, . . . , wm+1} ∪ (A\A′′)) = span ({w1, . . . , wm} ∪ (A\A′)) = span(A).

The argument is very similar to the one above.

It’s clear that you won’t get anything new in this new span.

On the other hand, we know we have

vj0 =
1

aj0



wm+1 −

m
∑

j=1

bjwj −
∑

vj /∈A′, j 6=j0

ajvj



 =
1

aj0

wm+1−

m
∑

j=1

bj

aj0

wj−
∑

vj /∈A′, j 6=j0

aj

aj0

vj .

(Just look at the form of wm+1 above.) Therefore, anything in the span
of A\A′ has the form

m
∑

j=1

djwj+
∑

cjvj =
∑

vj /∈A′, j 6=j0

cjvj+cj0





1

aj0

wm+1 −

m
∑

j=1

bj

aj0

wj −
∑

vj /∈A′, j 6=j0

aj

aj0

vj



 .

Regrouping, we get

m
∑

j=1

djwj +
∑

cjvj =
∑

j 6=j0

(

cj −
cj0aj

aj0

)

vj +
cj0

aj0

w1.

That is to say, an arbitrary element from the old span is in the span of
the modified collection of vectors.

2

Remark: The result above (the replacement lemma) is a generalization of
Theorem 7.4.

Theorem 5.1: If you have {w1, . . . , wℓ} ⊂ span{v1, . . . , vk} and ℓ > k, then
{w1, . . . , wℓ} is linearly dependent.

Proof: Assume that {w1, . . . , wℓ} is linearly independent. Then use the re-
placement lemma to replace all of the vectors in {v1, . . . , vk} with {w1, . . . , wk}.
Then you end up with wk+1 ∈ span{w1, . . . , wk}, which contradicts the
linear independence of {w1, . . . , wℓ}. 2

Theorem 5.3: If {w1, . . . , wℓ} and {v1, . . . , vk} are both linearly indepen-
dent sets which span the same subspace, then ℓ = k.

Proof: Assume ℓ < k. Then Theorem 5.1 says that {v1, . . . , vk} is linearly
dependent (a contradiction). Thus, ℓ ≥ k. But if you assume ℓ > k, then
you get a symmetric contradiction. 2

Remark: This last result, Theorem 5.3, says that the notion of dimension
is well defined for finitely generated vector spaces.

Here is another homework assignment for Tuesday June 12: 2.7.1, 4, 5, 6.
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Tuesday June 12, 2012

2.7.3 (Xian W.) This effort to show that a subspace of a finitely generated
space is finitely generated seemed to show some progress. The strategy
(as I interpret it) was to show the following:

If a space S is not finitely generated, then given any integer n,
there are n vectors s1, . . . , sn ∈ S which form a linearly inde-
pendent set.

If this claim is established, then one seeks a contradiction.

finite fields (Sarah M. and John R.) Sarah showed that no Zn can be a field
if n = pq is composite as follows:

If p has a multiplicative inverse k, then kp = mpq+1. Thus, (k−mq)p = 1.
But then you’re multiplying two integers which are between 1 and pq − 1
and getting 1, which is impossible.

Here is an alternative proof: Start as Sarah did. If p has a multiplicative
inverse k, then kp = 1. (This is in the field (modular) arithmetic now,
rather than in integer arithmetic.) But then kpq = q. (Multiply both
sided by q.) On the other hand, kpq = 0, since kpq is a multiple of pq.
Thus, q = 0 which is a contradiction.

Sarah also gave a partial proof that Zp is a field when p is prime. In
particular, she showed that each integer k between 1 and p − 1 has a
multiplicative inverse. The strategy was as follows: Look at the products
mk for m = 0, 1, . . . , p − 1 and show they are all different. This means
there must be p of them, and one of them must be 1.

In terms of real arithmetic, if two of the products km1 and km2 were
the same, then you would have some r ∈ Zp with km1 = q1p + r and
km2 = q2p + r. We can assume that m1 < m2, which I don’t think Sarah
mentioned, and then it follows that q1 < q2 as well. Then,

k(m2 − m1) = (q2 − q1)p.

We now have a product on the left of two integers which are both less
than p equal to a product of two positive integers, and one of them is
p. However, every positive integer greater than 1 is a unique product of
primes. This means that since p is a factor on the right, it must also be
a factor somewhere in k(m2 − m1). But there are no factors of p on the
left, since both k and m2 − m1 are smaller than p.

The last part of Sarah’s argument is a proof that there are no zero divisors
in Zp. This is a general property of fields:

If ab = 0 in a field, then either a = 0 and b = 0.

Can you prove this?
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It was also pointed out that there are other field properties that must be
verified for Zp. John and I gave a shot at proving the distributive property.
I think what we did was a bit too complicated:

In real arithmetic we can write

ab = pq1 + r1,

and
ac = pq2 + r + 2.

It follows that in integer arithmetic

a(b + c) = ab + ac = p(q1 + q2) + r1 + r2.

Then, if r1 + r2 = pq0 + r0, we have

a(b + c) = ab + ac = (q1 + q2)p + r1 + r2 = (q0 + q1 + q2)p + r0.

That is to say, a(b + c) and ab + ac are the same (r0) modulo p. In other
words, they are the same in the Zp. Thus, in Zp,

a(b + c) = r0 = ab + ac.

It is natural, in this situation to want to express b + c by its modular
equivalent, but this should be unnecessary if one has properly showed that
the multiplication in Zp is well defined. This, and several other properties,
are worth writing down.

We also talked about the notion of a field isomorphism. That is a function
φ which takes one field to another on a one-to-one and onto fashion and
preserves the operations:

φ(a + b) = φ(a) + φ(b) and φ(ab) = φ(a)φ(b).

If there is such a function, then we say that the fields are “the same.”

It can be shown that every finite field is Zp up to isomorphism.

1.2.6 (Peter Y.) If we assume that 0 in a field has a multiplicative inverse, then
we end up with the contradiction that every element in the field is 0.

Lemma: a · 0 = 0 for every a in the field. (Note: This proof uses the
assumption that 0 has a multiplicative inverse, but only for the case when
a = 0. Can you give a proof in that case independent of the contradictory
assumption of the problem?)

Proof: For every b,

b + a · 0 = b · 1 + a · 0

= b(a · a−1) + a · 0

= a(ba−1 + 0)

= aba−1

= b.
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This says that a ·0 is behaving like an additive identity. Since the additive
identity in a field is unique (proof?), we have established the lemma.

Next Peter used the lemma to solve the problem: a = a · 1 = a(0 · 0−1) =
(a · 0−1) · 0 = 0. 2

2.7.4 (Omar V.) Here we want to see that two two-dimensional subspaces ofR3 must intersect in at least a one-dimensional subspace. We didn’t get
to look at Omar’s argument, so we’ll do it next time.

2.5.2 (McCuan) Nobody seems to have gone back to the dreaded 2.5.2 and
given a solution which parallels the proof of Theorem 5.1 (induction). I
promised I would provide that, so here goes:

We first check that if w1 = c1(1, 0) and w2 = c2(1, 0), then {w1, w2} is
linearly dependent. This is easy since

c2w1 − c1w2 = (0, 0),

and the only circumstances under which both coefficients is zero is if w1

and w2 are both the zero vector. Notice that the same kind of argument
would work if we replaced (1, 0) with (0, 1) in the above assertion. OK, so
we have a little lemma to use.

Now, imagine that x = (x1, x2), y = (y1, y2), and z = (z1, z2). Using the
previous reasoning, we can assume that x1 6= 0. (Otherwise, we have three
vectors which are all multiples of (0, 1), and we know from the lemma that
even a set with two of them would be linearly dependent.) Now, we set

w1 = y − (y1/x1)x

and
w2 = z − (z1/x1)x.

You will note that these two vectors are both multiples of (0, 1). It follows
from the lemma that they form a linearly dependent pair. This means
there are coefficients λ1 and λ2, not both zero, with

∑

λjwj = (0, 0).

Expanding, this means:

λ1y−(λ1y1/x1)x+λ2z−(λ2z1/x1)x = −(λ1y1/x1+λ2z1/x1)x+λ1y+λ2z = (0, 0).

Since this is a nontrivial linear combination of x, y, and z, we are done.
2
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Thursday June 14, 2012

2.8.3 (Jevon R.) Given m equations

n
∑

j=1

αijxj = 0, i = 1, . . . , m

for the n unknowns x1, . . . , xn, we can form the coefficient matrix (αij)
with columns

cj =







α1j

...
αmj







and the unknown vector

x =







x1

...
xn,







so that the system becomes equivalent to (αij)x = 0 ∈ Rm.

Alternatively, we can express the same system as

n
∑

j=1

xjcj = 0 ∈ Rm.

In this latter formulation, the existence of a nonzero solution x is equiva-
lent to the assertion that {c1, . . . , cn} is a linearly dependent set in Rm. If
n > m, then this follows direclty from Theroem 5.1 since Rm is generated
by {e1, . . . , em}.

2.7.3 (Xian W.) Any vector space which is not finitely generated, has linearly
independent subsets of arbitrary finite size.

Proof by induction on the number of elements in the set: For a single
element set, simply take any nonzero element in the space. (If there is
no such element, then the space is {0}, and we agree that it is finitely
generated by convention.)

Now, say we have a linearly independent set {v1, . . . , vk} with k elements.
Since the space is not finitely generated, there is some vector w which is not
in the span of {v1, . . . , vk}. Set vk+1 = w. We claim that {v1, . . . , vk+1}
is linearly independent. To see this, consider a linear combination

k+1
∑

j=1

λjvj =

k
∑

j=1

λjvj + λk+1w = 0.

We know that λk+1 = 0, since otherwise, we have

w =

k
∑

j=1

(

−
λj

λk+1

)

vj
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which is in the span of {v1, . . . , vk}. Consequently, we have

k
∑

j=1

λjvj = 0

which implies λ1 = · · · = λk = 0, since {v1, . . . , vk} is linearly indepen-
dent. This establishes the lemma stated above.

Now, if S is a subspace of a finitely generated space T , then we know T
is generated by some finite collection of vectors {v1, . . . , vk}. Let n > k.
If we assume S is not finitely generated, then we can find a collection of
n linearly independent vectors in S. Since these vectors will also be in
T , Theorem 5.1 says they must form a linearly dependent set. This is a
contradiction.

Thus, S is finitely generated. Using Theorem 7.2, we know S and T both
have bases. If the basis for S has more elements than that of T , then
we again get a contradiction of Theorem 5.1, since the basis of S would
be a linearly independent set in T with too many elements. Thus, the
dimension of S cannot exceed that of T .

If equality holds between the dimensions of S and T , then there is a basis
{v1, . . . , vk} of S with k = dim(T ). If we assume there is some w ∈ T \S,
the the reasoning above implies that {v1, . . . , vk, w} is a linearly indepen-
dent set. But this leads again to the same contradiction of Theorem 5.1
since {v1, . . . , vk, w} has too many elements for a linearly independent set
in T . 2

zero divisors in a ring (Hadrien Glaude)

If F is a field, a, b ∈ F , and ab = 0, then a = 0 or b = 0.

Proof: Assume ab = 0 and a 6= 0. Then b = a−1ab = a−1 ·0 = 0. Similarly,
if ab = 0 and b 6= 0, then a = 0. 2

Here are some (cool and important) definitions:

Group: A group is a set G with an operation + which is associative
and together they satisfy the following two properties: (1) There is an
(additive) identity 0 ∈ G, and (2) Every element has an (additive) inverse.

Note: Sometimes the operation in a group might be a kind of multipli-
cation, as with the group of invertible matrices, or the group of nonzero
elements of R under multiplication.

Note: A group is called commutative if a + b = b + a for every pair of
elements a and b in the group.

Ring: A ring A is a set with two associative operations, addition and
multiplication such that the following are satisfied: (1) A is a commutative
group with respect to addition, and (2) there is a multiplicative identity
1 ∈ A, (3) multiplication distributes across addition: a(b + c) = ab + ac.
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Note: We didn’t say anything about multiplicative inverses in R. If you
have multiplicative inverses for nonzero elements, then I think you get the
property that ab = 0 implies a = 0 or b = 0. (Just use the proof above
and show that 0 · a = a · 0 = 0 in a ring like in a field.)

Note: A ring is called commutative if it is commutative with respect to
the multiplication.

A nonzero element of a ring which can be multiplied by another nonzero
element to get 0 is called a zero divisor. The nonexistence of zero divisors
in a ring has a special name:

A ring is called an integral domain if ab = 0 implies a = 0 or b = 0.

With this new terminology, we can rephrase the notion of a field:

A field is a commutative ring A such that A∗ = A\{0} is a
group under multiplication.

Here is a generalization of Sarah’s argument that elements in Zp have
multiplicative inverses:

If A is a finite commutative ring and there are no zero divisors, then A is
a (finite) field.

Proof: Given a ∈ A∗, define f : A → A by f(x) = ax.

First observe that f is one-to-one (injective): If f(x) = f(y), then ax = ay.
Thus, ax− ay = a(x− y) = 0. Since there are no zero divisors, and a 6= 0,
we must have x − y = 0, i.e., x = y.

Next, we claim that f is onto (surjective). The reason is because the
cardinality (number of elements) in {f(x) : x ∈ A} is the same as the
cardinality of A. In particular, there is some x ∈ A with f(x) = ax = 1.
2

8.1(h) (David G.) Given a system of m linear equations in n unknowns x1, . . . , xn

as above, we can leave out the x’s to form the augmented matrix:







α11 · · · α1n

...
αm1 · · · αmn

∥

∥

∥

∥

∥

∥

∥

b1

...
bm






.

Note that this system/equation is non-homogeneous: (αij)x = b.

One point that needs to be clear is that whenever you have a system like
this, you can encode all the relevant information about the problem in this
augmented array, and conversely, given an augmented m × (n + 1) array,
you can construct a system of m equations for n unknowns.

Next, associated with such a system (or with an augmented array), there
is a solution set Σ = {x ∈ Rn : (αij)x = b}. David’s first claim is that
the solution set doesn’t change under elementary row operations. In fact,
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it’s pretty clear that switching rows or multiplying a row by a nonzero
constant doesn’t change the solution set. Let’s think carefully about what
happens when we replace row i with row i plus λ times row j:

A′ =

















α11 · · · α1n

...
αi1 + λαj1 · · · αin + λαjn

...
αm1 · · · αmn

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

b1

...
bi + λbj

...
bm

















.

Most of the equations are the same, so if x is a solution of the original
system, then it will satisfy all of the equations except the i-th one for sure.
The i-th one will be satisfied as well:

∑

k

(αij + λαjk)xk =
∑

k

αijxk +
∑

k

λαjkxk = bi + λbj .

On the other hand, if x satisfies the new system associated with the mod-
ified matrix A′, then it satisfies all the original equations except maybe
the i-th one. And if we look at the i-th one, we see

∑

k

αijxk =
∑

k

αijxk + λ
∑

αjkxk − λ
∑

αjkxk

=
∑

k

(αij + λαjk)xk − λ
∑

αjkxk

= bi + λbj − λbj

since the last sum is bj by the j-th equation.

It was also pointed out that systems like this can be envisioned in terms of
a linear function L : Rn → Rm given by L(x) = (αij)x. One is asking the
question: What is the point set in Rn which maps onto a particular point
b ∈ Rm. If you want to understand how linear maps work, the relation to
linear systems of equations is pretty clear. It has something to do with
how close or how far the linear map is from being one-to-one. There are
other basic relations which we will/should see soon.

Thus, we have established that the solutions set remains unchanged under
elementary row operations. In particular, we can do some kind of row
reduction in order to easily solve such systems. Exercise (h) gives an
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example:




2 1 −1
1 0 −1
1 1 1

∥

∥

∥

∥

∥

∥

0
0
1





r1→r3−−−−→





1 1 1
1 0 −1
2 1 −1

∥

∥

∥

∥

∥

∥

1
0
0





r2→r2−r1, r3→r3−2r1

−−−−−−−−−−−−−−−→





1 1 1
0 −1 −2
0 −1 −3

∥

∥

∥

∥

∥

∥

1
−1
−2





r2→−r2, r3→−r3

−−−−−−−−−−−→





1 1 1
0 1 2
0 1 3

∥

∥

∥

∥

∥

∥

1
1
2





r3→r3−r2−−−−−−−→





1 1 1
0 1 2
0 0 1

∥

∥

∥

∥

∥

∥

1
1
1



 .

Now, starting at the last equation and working up, we see

x3 = 1.

x2 = 1 − 2x3 = −1.

And
x1 = 1 − x2 − x3 = 1.

The solution (1,−1, 1)T is easily seen to be a solution of the original
system. In fact, we have shown it is the unique solution. 2

uniqueness of 0 in a field (Dustin M.) This is a simplification of Dustin’s
original argument. . . and maybe a correction of it. If we assume there is
some other element, say a, which behaves like an additive identity, then
x + a = x for every x. In particular, if we put the other additive identity
0 in for x we get 0 + a = 0. But since 0 is acting like an additive identity
too, 0 + a = a and we have a = 0. 2

Tuesday June 19, 2012

2.9.3 (Claudia R.) I’m not exactly how Claudia’s solution went, but here is one
by row reduction:
(

−1 2 1 4
2 1 −1 1

∥

∥

∥

∥

0
1

)

r1→−r1, r2→r2−2r1

−−−−−−−−−−−−−−→

(

1 −2 −1 −4
0 5 1 9

∥

∥

∥

∥

0
1

)

.

The last equation is now 5x2 = 1 − x3 − 9x4, and we can let x3 and x4

be any numbers. The first equation then gives x1 = 2x2 + x3 + 4x4 =
2(1/5 − x3/5 − 9x4/5) + x3 + 4x4 = 2/5 + 3x3/5 + 2x4/5. Thus,








x1

x2

x3

x4









=









2/5 + 3x3/5 + 2x4/5
1/5 − x3/5 − 9x4/5

x3

x4









=









2/5
1/5
0
0









+x3









3/5
−1/5

1
0









+x4









2/5
−9/5

0
1









.
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It will be noted that this is a two-dimensional plane in R4 but not a
subspace. This kind of set is sometimes called an em affine subspace due
to the affine shift of the plane.

2.8.4 (Peter Y.) The objective here is to show that a homogeneous system of
equations

∑

xjcj = 0

in n unknowns has a nontrivial solution if and only if the rank of the
coefficient matrix is less than n.

If the system has a nontrivial solution, then this means exactly that the
columns {c1, . . . , cn} are linearly dependent. If we denote by S the spaced
spanned by these columns, then they are a generating set, and by Theo-
rem 7.3, some subset of the columns provides a basis for S. On the other
hand, the basis cannot consist of all elements of the set of columns, since
that is a linearly dependent set. Thus, the number of elements in the ba-
sis, which is the rank of the coefficient matrix, is less than n the number
of columns.

Conversely, if the rank of the coefficient matrix C is less than n, then we
can use Theorem 5.1 to conclude that the columns are linearly dependent.
To be precise, the space S spanned by the columns as above has a basis
(and a generating set in particular) with fewer than n elements. Now
Theorem 5.1 applies. 2

If we haven’t noted it above, let us note here that the rank of a matrix
is given in Definition 8.6 as the dimension of the column space S defined
above.

2.9.5 (Aishwarye C.) This one appears to still be open.

2.9.6 (Frank P.) If (x, y) = (α, β) and (γ, δ) are two points satisfying Ax +
By + C = 0, then

A

(

α
γ

)

+ B

(

β
δ

)

+ C

(

1
1

)

=

(

0
0

)

.

Since there are three unknowns and the rank can be no more than two, we
know by problem 2.8.4 that there exists a nontrivial solution (A, B, C).

I don’t really see an argument relating to other possible choices of (A, B, C).
Perhaps the idea was to use Corollary 9.4. (Did anyone explain why this
result is true?) If we can show that the rank is exactly two, then Corol-
lary 9.4 says that the solution space is exactly one dimensional, which
would mean that our original nontrivial soltuion (A, B, C)T would be a
basis vector for the solution space, and we would get a one dimensional
subspace of solutions as asserted in the problem.

Looking at the coefficient matrix
(

α β 1
γ δ 1

)

,
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we can see that the rank is exactly two as follows: First of all, the rank is
at least one since (1, 1)T is nonzero. Now, if the rank were one instead of
two, then both other column vectors would be multiples of the last column
vector. That means that the matrix would be

(

α β 1
α β 1

)

.

But then we would have (γ, δ) = (α, β) which we do not have since we
know the points are distinct. Thus, the rank is two and Corollary 9.4 gives
that the solution space is one-dimensional.

The final assertion of this problem is that the line {(x, y) : Ax+By +C =
0} passing through two distinct points is unique in R2. We have shown
that any other line defined by an equation A′x + B′y + C′ = 0 would be
λ(Ax + By + C) = 0. Of course, if λ were zero, then A′x + B′y + C′ = 0
would not define a line. Otherwise, λ 6= 0, and we get the same (unique)
line. 2

2.8.2 (David G.) This is another problem on systems of equations. The system
in question is given by the augmented matrix

(

3 −1 α
3 −1 1

∥

∥

∥

∥

1
5

)

r2→r2−r1−−−−−−−→

(

3 −1 α
0 0 1 − α

∥

∥

∥

∥

0
4

)

.

The last equation after reduction is (1 − α)x3 = 4. First of all, if α = 1,
then there is no solution. That’s clear.

If α 6= 1, then we have x3 = 4/(1 − α) and 3x1 − x2 + x3 = 3x1 − x2 +
4/(1 − α) = 0. Making x1 arbitrary, we get infinitely many solutions





x1

x2

x3



 =





x1

3x1 + 4/(1 − α)
4/(1 − α)



 =





0
4/(1 − α)
4/(1 − α)



+ x1





1
3
0



 .

subgroups of Z (Hadrian G.) A subgroup of a group is a subset which is a
group under the same operation. As an exercise, you can check that a
subset H of a group G is a subgroup if and only if (1) H contains the
additive identity and (2) a − b ∈ H whenever a, b ∈ H .

We are going to use the characterization of subgroups to show that H is
a subgroup of Z if and only if there is some natural number m such that
H = {mn : n ∈ Z}.
Proof: If H = mZ, then (1) 0 ∈ H and (2) If a, b ∈ H , then a = pm and
b = qm for some p and q. Therefore, a − b = (p − q)m ∈ mZ. It follows
that H is a subgroup of Z.

Conversely, if H is any subgroup. . .
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Tuesday July 3, 2012

3.11.5 (Claudia R.) The objective here is to show the image under a linear
function of a subspace is a subspace. The first thing to do is look at the
form of the image:

L(V ) = {L(v) : v ∈ V }.

Here I’m denoting the subspace by V to make the notation simple. It has
been noted earlier that it is enough to show L(V ) is closed under addition
and scalar multiplication. For addition, we take two arbitrary elements
of L(V ) and try to express them as L of some element in V . Using the
linearity of L this is not hard:

L(v) + L(w) = L(v + w).

Since V is closed under additon, we see that v + w ∈ V and L(v + w) ∈
L(V ). Similarly,

αL(v) = L(αv),

and since V is closed under scalar multiples, αv ∈ V and L(αv) ∈ L(V ).

3.11.8(a) (Gautam G.) Gautam’s key observations are the following:

• A linear transformation is onto if every vector in the target space can
be written as a linear combination of the columns of the matrix for
the linear transformation.

• If any basis for the target can be expressed as a linear combination
of the columns, then every other vector in the target can be as well.

For this problem, the target is R2 and the matrix is
(

3 −1
1 1

)

.

The first column minus the second column if 4e1. And the first column
plus three times the second column is 4e2.

3.12.3(b) (Samantha A.) Here we want to solve
(

1 1 0
−1 1 2

)

x =

(

0
0

)

.

The first equation implies that x1 = −x2, and the second equation then
becomes 2x2 + 2x3 = 0, or x2 = −x3. Setting x3 = a, the solution set is

Σ =











a
−a
a



 : a ∈ R


.

This is a straight line in R3 passing through the origin and the point
(1,−1, 1)T .
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3.11.10 (John R.) An integration mapping on polynomials is defined by

I(f) =

k
∑

j=0

aj

j + 1
xj+1

where f =
∑

ajx
j . Differention gives another linear mapping D with the

usual formula. In particular, differentiating the expression above, we get

DI(f) =

k
∑

j=0

ajx
j ,

so that D composed with I is the identity mapping on polynomials.

It should be noted that D is consequently onto since for any polynomial f ,
we have I(f) = g is a polynomial, and f = D(I(f)) = D(g). On the other
hand, D is not one-to-one since the image of any constant polynomial
under D is the zero polynomial.

The transformation I is one-to-one, because if we compare expressions like
that above formally:

I(f) =

k
∑

j=0

aj

j + 1
xj+1 =

ℓ
∑

j=0

bj

j + 1
xj+1 = I(g)

for some polynomial g =
∑

bjx
j , then we must have k = ℓ and aj/(j +

1) = bj/(j + 1) for j = 0, 1, . . . , k. That is, aj = bj , so that f = g.
This antiderivative is not onto, however, because it is never the case, for
example, that I(f) = 1.

Theorem 11.13 (David G.) This theorem says that a linear transformation
is invertible if and only if it is one-to-one and onto. For clarity, let’s
generalize the result to L(V, W ) where V and W are possibly different
vector spaces. For this, we need to generalize Definition 11.9:

A linear transormation T ∈ L(V, W ) is invertible if there is some
linear transformation T−1 ∈ L(W, V ) such that

T ◦ T−1 = idW and T−1 ◦ T = idV .

If we prove the result for this definition, then the result stated in the text
will follow as a special case.

For “only if” direction, we assume T is invertible. Then given any w ∈ W ,
we can set v = T−1(w) ∈ V , and we find that T (v) = w. Thus, T is onto.
On the other hand, if T (v) = T (ṽ) for some v and ṽ in V , then we can
apply T−1 to both sides, to see that v = ṽ. Hence, T is one-to-one.

In the other direction, we must define the transformation T−1, show it is
well defined and linear. And then show the two composition conditions.
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First for the definition, we set T−1(w) = v where v is some vector in V
with T (v) = w.

We know there is such a vector v because T is onto. We claim that there
is only one such v. In fact, if ṽ were another vector in V with T (ṽ) = w,
then we would have T (v) = T (ṽ), and it would follow from the injectivity
of T that ṽ = v.

We have established that T−1 is a well defined function. (Remember the
defintion: T−1 is a rule or correspondece which assigns to each w ∈ W , a
unique v ∈ V .)

As David correctly points out, we must show that T−1 is linear. First we
want to consider, say, T−1(w) + T−1(w̃). According to the definition, we
can write T−1(w) = v and T−1(w̃) = ṽ, where

T (v) = w,

T (ṽ) = w̃,

and by the linearity of T ,

w + w̃ = T (v + ṽ).

Using this last identity and the defintion of T−1, we see that

T−1(w + w̃) = v + ṽ.

But v + ṽ = T−1(w)+T−1(w̃), so we have that T−1 is additive on vectors
in W .

Similarly, we see that

T (αT−1(w)) = αT ◦ T−1(w),

and since T−1(w) is the vector whose image under T is w, this becomes

T (αT−1(w)) = αw.

That is, αT−1(w) is the vector whose image under T is alphaw. By the
definition of T−1, this means

T−1(αw) = αT−1(w).

We have now shown that T−1 is well defined and linear. It remains for
Thursday to show that T ◦ T−1 = idW and the similar composition asser-
tion with the reverse order.
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Thursday July 5, 2012

Theorem 11.13 (David G.) Remember the definition: T−1(w) is the vector v
such that T (v) = w. Thus, to compute

T ◦ T−1(w)

we look for T (v) where v is a vector with T (v) = w. Well, I guess it’s w,
so we’re done in this case. That is,

T ◦ T−1 = idW .

On the other hand,
T−1 ◦ T (v)

is the vector ṽ such that T (ṽ) = T (v). That vector is v.

Theorem 13.10 (Liangyi S.) Actually, this is only part of the proof of the
theorem which says that a linear transformation of a finite dimensional
vector space into itself is invertible if and only if it is surjective (onto).

Furthermore, Liangyi did a version of the theorem for matrices, which is
apriori a special case, but turns out to be more or less the same thing.

Here’s how it went.

By saying a matrix An×n is invertible, we mean there is a matrix B = A−1

such that AB = BA = I the identity matrix. If this is true, we want to
show the rank of A is n (which is the same thing as being surjective).

It is enough to show the columns of A are linearly independent. Taking
a linear combination of the columns which expresses the zero vector, we
have Ax = 0 (where x is the column vector with the coefficients). But
then we can apply A−1 to both sides to conclude x = 0. Thus, there
are no nontrivial linear combinations of the columns which give the zero
vector, i.e., the columns are linearly independent.

This means the dimension of the image, i.e., the rank, is n.

Conversely, if we assume the rank of A is n, then there is some basis for
the image Rn among the columns. Since the dimension of Rn is known
to be n, however, it must be that the basis contains all the columns. In
particular, the columns must be linearly independent. This, as above,
means that the equation Ax = 0 has only the zero solution.

Now, we want to show injectivity of the mapping L(x) = Ax. If we had
Ax = Ax̃, then we would have A(x − x̃) = 0, but since we know there is
only the zero solution, this gives x = x̃. 2

compositions (Jevon R.) If S : M → N and T : N → P are (linear), one-to-
one, and onto, then T ◦ S : M → P is (linear), one-to-one, and onto. The
linearity was not shown.
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To show surjectivity, let p ∈ P . Since T is surjective, there is an n ∈ N
with T (n) = p. Next, since S is surjective, there is some m ∈ M with
Sm = n. Therefore, T (S(m)) = T (n) = p and TS is onto.

To show injectivity, assume TS(m1) = TS(m2). Since T is injective, this
means S(m1) = S(m2). But since S in injective, this means m1 = m2. 2

Tuesday July 10, 2012

row and column rank (Xian W.) Let Am×n be a matrix with column rank r.
Denote the columns of A by C1, . . . , Cn and a basis for the column space
by {b1, . . . , br}. Each of the columns admits an expression

Cj =

r
∑

i=1

λijbi.

The resulting coefficients make a matrix Λr×n, and

A = BΛ

where Bm×r is the matrix with b1, . . . , br in the columns.

Look at this product. Notice that the i-th row Ri of A is given by

Ri =

r
∑

j=1

bij(λj1, λj2, . . . , λjn)

where the j-th entry of the column bi is denoted by bij . This says that the
rows of A are all linear combinations of the r rows of Λ. Since the rows
of A are spanned by a set containing r row vectors, we see that the row
rank of A cannot exceed the rank r.

This is a general result:

The row rank of a matrix is less than or equal to the (column)
rank.

Applying this result to AT , we find that the rank of A, which is the row
rank of AT , is less than or equal to the rank of AT . Since the rank of AT

is the row rank of A, we see that the rank of a matrix cannot exceed the
row rank of a matrix as well. Thus, the row rank and the (column) rank
must be equal.

This is a good proof, but I would still like for you to follow up on the proof
using elementary row operations and the pivots of row echelon form. You
need to understand the idea of isomorphism pretty well, and this is a good
opportunity to do that.
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3.13.1 (Sarah M.) Given a linear transformation T : V → W of a finite di-
mensional vector space V into a finite dimensional vector space W and
given bases {v1, . . . , vn} and {w1, . . . , wm} for V and W respectively, the
definition of the matrix of T with respect to the bases {v1, . . . , vn} and
{w1, . . . , wm} is the following:

Express the image of each basis element of V in terms of the basis for W :

T (vj) =

m
∑

i=1

aijwi.

Then the matrix A of T with respect to {v1, . . . , vn} and {w1, . . . , wm} is
the matrix with aij in the i-th row and j-th column.

Notice that if we write any vector x ∈ V as x =
∑

xjvj , then we can
associate a column vector ξ = (x1, . . . , xn)T ∈ Rn with x, and we have

Aξ = η

where η is the column vector in Rm consisting of the coefficients of T (x) =
∑

yiwi. To see this, simply note that

T (x) =
∑

j

xjT (vj) =
∑

j

xj

∑

i

aijwi =
∑

i

∑

j

aijxjwi =
∑

i

(
∑

j

aijxj)wi.

This exercise asks you (i.e., Sarah) to write down a linear transformation
T : V → V with respect to two different bases. First of all, if {u1, u2}
is a basis and T (u1) = u2, T (u2) = u1, then the matrix with respect to
{u1, u2} is

A =

(

0 1
1 0

)

.

Now, taking an alternative basis w1 = 3u1 − u2, w2 = u1 + u2, we can
compute to find u1 = (w1 + w2)/4 and u2 = (−w1 + 3w2)/4. Using these
relations, we find T (w1) = −w1 +2w2 and T (w2) = w2, so that the matrix
of T with respect to {w1, w2} is

B =

(

−1 0
2 1

)

.

If you think about this kind of example, you can “see” the linear transfor-
mation T as a transformation of R2 in different ways. One way to think
about what you are seeing is that you are taking the particular basis cho-
sen as the “standard basis” {e1, e2} for R2. If you think about it like this,
then the relation

{

w1 = 3u1 − u2

w2 = u1 + u2

is saying that you are going to use a change of basis matrix M which
sends the vector 3e1 − e2 (which is the vector you think of as 3u1 − u2
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when you are using A) to e1 (which is the vector you think of as w1 when
you are using B). Similarly, M should send e1 + e2 to e2. The associated
matrix M is not immediately obvious to write down since we are using the
standard basis here. But if you think about how to write down the matrix
associated with a transformation of R2 with respect to the standard basis,
then it is really easy to write down

M−1 =

(

3 1
−1 1

)

since you know the images of e1 and e2 under the inverse of the change
of basis. You can check that B = MAM−1. The matrix M−1 is referred
to as X in the problem.

rank-nullity theorem (Claudia R.) This is a version of the rank-nullity theo-
rem which says that when you have a linear transformation L : Rn → Rm,
then

dimL(Rn) + dimker(L) = n.

That is, the dimension of the kernel and the dimension of the image add
up to the dimension of the domain.

Letting A denote the matrix of such a transformation there is a homo-
geneous system of equations associated with the kernel, namely, Ax = 0.
Denoting the solution space of this system by Σ,

Σ = {x : Ax = 0}

and we want to show
dimΣ = n − r

where r is the rank of A. (As we know, the rank of A is the dimension of
the image of L.)

Claudia (and the book) wishes to begin by taking a basis for the column
space from among the columns and then rearranging the columns so that
the basis is given by the first r columns. This should really be carefully
justified.

Let C1, . . . , Cn denote the columns of A. We are going to start a little
bit like Xian did and take a basis for the column space, however, since
C1, . . . , Cn is a generating set, we can use a theorem from the book (or
the replacement lemma) to choose this basis from among the columns.
Let’s say the basis we get is

{Cj(1), Cj(2), . . . , cj(r)}.

Notice that this means there is a function j : {1, 2, . . . , r} → {1, . . . , n}
which is one-to-one and assigns each integer in its domain to a particular
column number from among the basis column numbers. What is desired
is to rearrange the columns with the basis columns appearing first.
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In order to do this, we can extend the domain of j in any manner to include
{r + 1, . . . , n} as long as the resulting function j : {1, . . . , n} → {1, . . . , n}
is one-to-one and onto. Let’s say we’ve done this. (To do it rigorously
might require some kind of finite induction depending on your taste and
how skeptical you happen to be at the time.)

Now, we have a new ordering of columns {b1, . . . , bn} with bk = Cj(k). In
particular, if we put these columns in a matrix B, then the first r of them
make a basis for the column space. We now work with B and attempt to
prove that

dimΣB = n − r

where ΣB = {x : Bx = 0}. This works as follows:

For k = r + 1, . . . , n, we can write

bk =

r
∑

ℓ=1

αkℓbℓ.

This means that

uk =
r
∑

ℓ=1

αkℓeℓ − ek

is an element of ΣB for k = r + 1, . . . , n. Notice that this is a collection
of n − r vectors {ur+1, . . . , un}. We want to claim that this is a basis for
ΣB. This requires three things

1. Each vector uk should be in ΣB. (We’ve claimed this is true, but you
should make sure you see why it’s true.)

2. The collection should be linearly independent. (This is pretty easy
to see since uk has a −1 for it’s k-th entry and um has a zero when
m 6= k.)

3. Each vector in ΣB can be written as a linear combination of the uk.
(This one is shown in the book, but we haven’t done it yet.)

I’ll do the second one carefully, and set you up to do the third one.

Let’s say
∑

λkuk = 0. Then choosing any particular m, the m-th compo-
nent of the linear combination is −λm. This means that λm = 0, so we
have linear independence.

For the last one, let x be any element of ΣB . This means that Bx = 0.
This means that a certain linear combination of the bk’s is zero. You
need to show that it also means the vector x can be written as a linear
combination of the uℓ’s. This is a main point.

Markov Chain Matrix (Omar V.) Take a square matrix A for which the
entries of each column sum to 1. We would like to show there is a vector
x, the sum of whose entries sum to 1 and which satisfies

Ax = x.

37



Thursday July 12, 2012

Markov Chain Matrix (Omar V.) Given the square matrix above, we want
to show there is a nonzero vector x with (A − I)x = 0.

Notice that the matrix A−I has the property that each column has entries
summing to zero. Thus, if we apply elementary row operations, we find

A − I
rn→rn−r1−−−−−−−→ B1

rn→rn−r2−−−−−−−→ · · ·
rn→rn−rn−1

−−−−−−−−−→ Bn−1

where Bn−1 has the last row all zeros. Thus, the row rank of A− I is less
than n. In particular, by the rank-nullity theorem, the dimension of the
kernel of A − I is at least n − (n − 1) = 1, and there is a nonzero vector
x with (A − I)x = 0.

Such a vector is also called an eigenvector with eigenvalue 1, or a fixed
vector for the matrix A, or a fixed point for the corresponding linear trans-
formation.

We haven’t yet shown that we can take the sum of the entries in x to be
1.

AT A (Hadrian G.) Hadrian pointed out some interesting properties of the trans-
pose matrix. First of all, given any two matrices that can be multiplied,
one can check that

(AB)T = BT AT .

As a consequence,
(AT A)T = AT A,

and this means that AT A is always symmetric. Furthermore, the null-
space associated with AT A, namely Σ = {x : AT Ax = 0}, is the same as
the null space associated with A.

In order to see this, first observe that {x : Ax = 0} ⊂ Σ. This is clear.
On the other hand, if x satisfies AT Ax = 0, then

‖Ax‖2 = (Ax)T (Ax) = xT AT Ax = xT 0 = 0.

Thus, Ax = 0. Thus, Σ ⊂ {x : Ax = 0}. 2

3.13.7, 2, 8 (Dustin M.) If T : V → V , then

T 2 = 0 ⇔ T (V ) ⊂ n(T ).

⇐: Assume T (V ) ⊂ n(T ) and take any x ∈ V . Then T (x) ∈ T (V ), so
T (x) ∈ n(T ). This means T (T (x)) = T 2(x) = 0. Since x was arbitrary,
we have shown that T 2 = 0.

⇒: Assume T 2 = 0, and take x ∈ T (V ). We know that x = T (v) for some
v ∈ V . Thus, T (x) = T 2(v) = 0. This means that x ∈ n(T ). 2
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An earlier problem considers a transformation S : u1 7→ u1 + u2, u2 7→
−u1 − u2, where u1 and u2 provide a basis for the domain of S. If we
compute S(x) = S(x1u1 +x2u2) for an arbitrary element x in the domain,
we find

S(x) = (x1 − x2)(u1 + u2).

This means, first of all, that the image is contained in W = span{u1 +u2}
which is a one-dimensional space since you can’t sum basis vectors to get
the zero vector.

On the other hand, taking an element of W is the same as taking x1 = x2

in our original computation. Thus, we see that W ⊂ n(S). So this example
falls into the category of problem 3.13.7 and gives the example sought in
problem 3.13.8.

Tuesday July 17, 2012

4.14.4(c) (Noah C.) The basic objective here is to show that a composition of
rotations of R2 is a rotation, the composition of two reflections of R2 is a
rotation, and the composition of a reflection and a rotation is a reflection.

The definition of a rotation is a distance preserving linear transformation
of R2 which has matrix (with respect to the standard basis) of the form

(

a −b
b a

)

.

The condition that the transformation is distance preserving implies that
a2 + b2 = 1. (Why? Answer: Because the image of e1 is (a, b)T .)

Conversely, if a2 + b2 = 1, then there is some angle θ such that a = cos θ
and b = sin θ. Then you can easily check that the matrix corresponds to
a counterclockwise rotation of the plane through an angle θ.

We discussed similar considerations in regard to reflections of R2. The
basic definition is that the transformation should be distance preserving
and the corresponding matrix should have the form

(

a b
b −a

)

.

It is also true in this case that distance preserving is equivalent to the
condition a2 + b2 = 1. We also discussed how any reflection could be
decomposed into the composition of a reflection about one of the standard
axes and a rotation, and that given a matrix like that above, there is some
axis of reflection associated with the transformation.

Note that there is an angle θ associated with the a and the b appearing
in the matrix in this case too. What is the axis of reflection in terms of
this θ?
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With these considerations out of the way, the rest of the problem is a
computation. I will do the composition of a reflection and a rotation.

(

a −b
b a

)(

c d
d −c

)

=

(

ac − bd ad + bc
bc + ad bd − ac

)

.

Since the upper left entry of the product α = ac − bd is the negative of
the lower right entry, and the upper right entry β = ad + bc is the same
as the lower left entry, the matrix of the composition has the form

(

α β
β −α

)

.

We need to check that the transformation is distance preserving:

α2+β2 = a2c2−2abcd+b2d2+a2d2+2abcd+b2c2 = (a2+b2)c2+(b2+a2)d2 = c2+d2 = 1.

powers of a linear transformation (Hadrian G.) Here Hadrian took a linear
transformation L of a finite dimensional vector space and considered the
sequences of inclusion

kerL ⊂ kerL2 ⊂ kerL3 ⊂ . . .

and
Im L ⊃ Im L2 ⊃ Im L3 ⊃ . . . .

To see the first inclusions, note that if x ∈ kerLp, then Lp(x) = 0. Thus,
Lp+1(x) = 0. To see the second inclusions, note that if x ∈ Im Lp, then
x = Lp(ξ) for some ξ in the domain of L. In particular, x = Lp−1(L(ξ)).
Since L(ξ) is also in the domain of L, we see that x ∈ Im Lp−1. (The
second argument only works for p > 1.)

Finally, Hadrian wants to show that these sequences stabilize. (If you don’t
know what it means for a sequence to stabilize, just follow the reasoning
below, and that should become clear.)

Notice that the sequence of kernels implies a sequence of inequalities

dimkerL ≤ dim kerL2 ≤ dimkerL3 ≤ . . . .

Furthermore, each of these inequalities is strict unless the consecutive
kernels are actually equal. Thus, we have an increasing sequence which is
bounded above by the dimension of the domain of L. It follows that there
are some equalities in the sequence. Let p be the first power for which

dim kerLp = dimkerLp+1

and consequently
kerLp = kerLp+1.
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Considering x ∈ kerLp+2, we note that

Lp+1(L(x)) = 0.

Thus, L(x) ∈ kerLp+1 = kerLp. That is, Lp(L(x)) = Lp+1(x) = 0. That
is, x ∈ kerLp+1. We have shown that kerLp+2 ⊂ kerLp+1. Since the
reverse inclusion is given in our original sequence, we have equality.

Extending this reasoning inductively, we see that kerLr = kerLp for all
r ≥ p. This means that the first sequence stabilizes. We see immediately
from this, and the rank-nullity theorem

dim Im Lr + dimkerLr = constant

that the second sequence must also stabilize.

Thursday July 19, 2012

4.15.5 (Peter Y.) Given a finite orthonormal basis {u1, . . . , un} for a vector
space, any vector u =

∑

ajuj has coordinates

aj = 〈u, uj〉.

To see this, just take the inner product of both sides with uk:

〈u, uk〉 =
∑

aj〈uj, uk〉 =
∑

ajδjk = ak.

Note that we have used the notation

δjk =

{

0 if j 6= k
1 if j = k

Also, if v =
∑

biui, then

〈u, v〉 =
∑

i,j

ajbi〈uj , ui〉 =
∑

j

aj

(

∑

i

biδij

)

=
∑

j

ajbj .

distance preservation (Claudia R.) This was an interesting discussion of the
assertion that a distance preserving function from R2 to R2 which fixes
the origin must be linear. Here are some highlights:

• Curtis’ proof seems to be wrong.

• (Hadrian G.) There is a polarization identity for the inner product:

〈u, v〉 =
1

2

(

‖u + v‖2 − ‖u‖2 − ‖v‖2
)

.

• We don’t have a proof of this fact yet.
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rotations and reflections (Gautam G.) It would be interesting to show that
a linear transformation of R2 with matrix having the form

(

a −b
b a

)

or
(

a b
b −a

)

and satisfying a2 + b2 = 1 is distance preserving.

Tuesday July 24, 2012

4.15.7 (Xian W.) Orthogonal transformations are linear functions on Rn which
preserve distance. This is equivalent to the following condition:

The matrix A of the transformation with respect to an orthonor-
mal basis satisfies

AT A = I.

Note: One must show the equivalence of this to the definition above, and
one also needs to show that the secondary definition is not dependent on
the choice of basis. (Can you do this?)

Since we already know that the linear transformations on Rn form a group,
we only need to show closure and inverses.

To see closure, use the secondary definition. If the matrices of two or-
thogonal transformations are given by A and B, then the matrix of the
composition (product) is given by C = AB. Now, we check that the
composition transformation is orthogonal:

CT C = (AB)T AB = BT AT AB = BT B = I.

Thus, the transormation generated by C is orthogonal and we have closure.

We next check inverses: If A is the matrix of an orthogonal transformation
(with respect to an orthonormal basis), then—Hey wait a second, I think
we need to show that A is invertible first before we show that its inverse
is distance preserving. I don’t remember that we did this. So maybe this
one is still open. Sorry Xian.

It’s true that we need to show invertibility. But let’s go on assuming we
have done that. Here is Xian’s proof that the inverse (if it is well defined)
is orthogonal: Let x ∈ Rn. Then T−1(x) ∈ Rn. We need to show that the
norm of T−1(x) is the same as the norm of x, then distance preserving
follows. But since T is distance (and norm) preserving, we have

‖T−1(x)‖ = ‖T (T−1(x))‖ = ‖x‖.

This is what we wanted.
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4.15.9 (Rui F.) Here we take a subspace W of a finite dimensional vector space
V and we wish to show that

dimW + dimW⊥ = dimV.

The strategy is to use the identity

dimW + dimW⊥ = dim (W + W⊥) + dim (W ∩ W⊥)

from (7.5) on page 51. It would be good to prove (7.5).

In any case, we want to claim that

W + W⊥ = V and W ∩ W⊥ = {0}.

To see the first assertion, it is enough to show reverse inclusion, since the
forward inclusion is obvious from the fact that

W + W⊥ = {w + w̃ : w ∈ W, w̃ ∈ W⊥}

and V is closed under addition. (In fact, it would be good to prove that
this sum is a subspace.) Now, let v ∈ V . Taking an orthonormal basis
{w1, . . . , wm} for W , we rewrite v as

v = a + (v − a)

where
a =

∑

〈v, wj〉wj .

An easy computation shows that b ∈ W⊥. Since it is clear that a ∈ W ,
we have shown that v = a + b ∈ W + W⊥.

It remains to prove that W ∩W⊥ = {0}. This is easy, since the definition
of W⊥ is

W⊥ = {x ∈ V : 〈x, w〉 = 0 for all w ∈ W}.

Thus, if w is in the intersection, it must satisfy

‖w‖2 = 〈w, w〉 = 0.

This means w = 0.

Note: It would also be a good idea to show that W⊥ is a subspace.

rotations and reflections (Gautam G.) See the description of this problem
above.

Let L be such a transformation and let the matrix (for example a rotation
matrix) be denoted A, so that L(x) = Ax. Then

‖L(x)‖2 = ‖(ax1 − bx2, bx1 + ax2)
T ‖2

= (ax1 − bx2)
2 + (bx1 + ax2)

2

= a2x2
1 + b2x2

2 + b2x2
1 + a2x2

2

= (a2 + b2)x2
1 + (a2 + b2)x2

2

= x2
1 + x2

2

= ‖x‖2.
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This means that L preserves norms. And for linear transformations this
is enough to get distance preserving since

‖L(x) − L(y)‖ = ‖L(x− y)‖ = ‖x− y‖.

Gautam also showed that such transformations preserve inner product.
This should provide the needed information to complete Claudia’s (and
Curtis’) proof that distance preserving implies linear (affine).

determinants and parallelograms (Aishwarye C.) Aishwarye undertook to
show that a linear transformation L of a parallelogram P has area given
by

areaL(P ) = detAarea (P ).

He ran out of time, and it will be interesting to see how his work proceeds.

Thursday July 26, 2012

Product Formula For Determinant (Liangyi S) This is an outline of the
proof that for square matrices detAB = detAdetB:

1. First show that if E is an elementary row matrix, i.e., the matrix cor-
responding to an elementary row operation, then E has determinant
as follows:

(a) Type 1 (replace a row with itself plus a constant times another
row)

detE = 1.

(b) Type 2 (switch rows)
detE = −1.

(c) Type 3 (multiply a row by λ 6= 0)

detE = λ.

2. Show that for an elementary row matrix

detEB = detEdet B.

This is the main step in some sense.

3. Show that A is invertible if and only if detA 6= 0.

To see this, observe that A can be reduced to echelon form A′ using
only type 1 and 2 elementary row operations. This corresponds to
multiplying A on the left by a sequence of elementary row opera-
tions, and the determinants of such products can only differ from the
determinant of A by a sign. Thus, the condition that detA 6= 0 is
equivalent to the condition that detA′ 6= 0. Note that A can also be
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obtained by multiplication on the left by elementary row matrices;
the inverses of the ones used to reduce A. For a matrix in echelon
form, it is easy to see that the condition detA′ 6= 0 is equivalent to
the condition that A′ has full rank. But we already know that A′

has full rank if and only if A has full rank. And we also know that
A has full rank if and only if A is invertible. So we are done.

Next we come to the main proof:

4. If A is invertible, we ho ahead and use elementary row operations to
reduce A to the identity. This means

A = E1 · · ·EkI.

Thus, detA = det E1 · · · detEk. Therefore,

det AB = detE1 · · ·EkB = detAdetB

by the second step above.

5. If A is not invertible, then we know from the third step that detA = 0.
More precisely, when we reduce A to echelon form A′, we see that A′

ends with a row of zeros. This gives us:

detAB = detE1 · · ·EkA′B = detA′B.

But looking at A′B, we see that the last row of this product must be
all zeros. This means det A′B = 0, and we are done. 2

2.12.2 (Samantha A.) The question here is: Does matrix multiplication of n×n
matrices satisfy the commutative property, AB = BA?

Samantha’s answer is “Yes” when n = 1 since multiplication in a field
commutes and that is what you’re doing when n = 1.

For n > 1, the answer is “No.” To see this, note that when n = 2
(

1 0
0 0

)(

0 1
0 0

)

=

(

0 1
0 0

)

but
(

0 1
0 0

)(

1 0
0 0

)

=

(

0 0
0 0

)

.

Thus, not all 2×2 matrices commute. It’s also worth noting that if A and
B represent 2× 2 blocks and we use zeros to denote blocks of appropriate
size to fill out an n × n matrix like this:

(

A 0
0 0

)

,

then the block multiplication formula
(

A 0
0 0

)(

B 0
0 0

)

=

(

AB 0
0 0

)
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holds. Thus, not all n × n matrices will commute either.

Finally, it might be worth nothing that diagonal matrices commute with
everything. Can you think of other matrices with this property?

Area and Determinants (Aishwaye C.) We also talked about various aspects
of area and determinants. I think we convinced ourselves that in the 2×2
case, the determinant of a matrix with c1 and c2 in the columns gives
the area of the parallelogram spanned by c1 and c2 up to a sign. The
parallogram spanned by c1 and c2 is defined to be

P = {ac1 + bc2 : 0 ≤ a, b ≤ 1}.

We talked a bit about why this is a reasonable definition and what we
might mean by “signed area” and orientation.

Incidentally, we also talked about rotations of R2 and verified directly
that the product formula for determinants holds when the first matrix is
a rotation. (The more you know, the more you know.)

46


