Heavily burdened deformable bodies: Asymptotics and attractors

CDSNS Colloquium
Thursday, April 23, 2015 - 1:30pm
1 hour (actually 50 minutes)
Skiles 005
University of Maryland

This is the 3rd Jorge Ize Memorial lecture, at IIMAS, Mexico City. We will join a videoconference of the event.

The equations governing the motion of a system consisting of a deformable body attached to a rigid body are the partial differential equations for the deformable body subject to boundary conditions that are the equations of motion for the rigid body. (For the ostensibly elementary problem of a mass point on a light spring, the dynamics of the spring itself is typically ignored: The spring is reckoned merely as a feedback device to transmit force to the mass point.) If the inertia of a deformable body is small with respect to that of a rigid body to which it is attached, then the governing equations admit an asymptotic expansion in a small inertia parameter. Even for the simple problem of the spring considered as a continuum, the asymptotics is tricky: The leading term of the regular expansion is not the usual equation for a mass on a massless spring, but is a curious evolution equation with memory. Under very special physical circumstances, an elementary but not obvious process shows that the solution of this equation has an attractor governed by a second-order ordinary differential equation. (This survey of background material is based upon joint work with Michael Wiegner, J. Patrick Wilber, and Shui Cheung Yip.) This lecture describes the rigorous asymptotics and the dimensions of attractors for the motion in space of light nonlinearly viscoelastic rods carrying heavy rigid bodies and subjected to interesting loads. (The motion of the rod is governed by an 18th-order quasilinear parabolic-hyperbolic system.) The justification of the full expansion and the determination of the dimensions of attractors, which gives meaning to these curious equations, employ some simple techniques, which are briefly described (together with some complicated techniques, which are not described). These results come from work with Suleyman Ulusoy.