Incoherence and Synchronization in the Hamiltonian Mean Field Model

CDSNS Colloquium
Monday, January 6, 2014 - 11:00am
1 hour (actually 50 minutes)
Skiles 005
Department of Applied Mathematics, University of Colorado, Boulder
Synchronization of coupled oscillators, such as grandfather clocks or metronomes, has been much studied using the approximation of strong damping in which case the dynamics of each reduces to a phase on a limit cycle. This gives rise to the famous Kuramoto model.  In contrast, when the oscillators are Hamiltonian both the amplitude and phase of each oscillator are dynamically important. A model in which all-to-all coupling is assumed, called the Hamiltonian Mean Field (HMF) model, was introduced by Ruffo and his colleagues. As for the Kuramoto model, there is a coupling strength threshold above which an incoherent state loses stability and the oscillators synchronize. We study the case when the moments of inertia and coupling strengths of the oscillators are heterogeneous. We show that finite size fluctuations can greatly modify the synchronization threshold by inducing correlations between the momentum and parameters of the rotors. For unimodal parameter distributions, we find an analytical expression for the modified critical coupling strength in terms of statistical properties of the parameter distributions and confirm our results with numerical simulations. We find numerically that these effects disappear for strongly bimodal parameter distributions. *This work is in collaboration with Juan G. Restrepo.