Cellular Legendrian contact homology for surfaces

Geometry Topology Seminar
Monday, March 6, 2017 - 2:00pm
1 hour (actually 50 minutes)
Skiles 006
Ball State University
This is joint work with Mike Sullivan. We consider a Legendrian surface L in R5 or more generally in the 1-jet space of a surface. Such a Legendrian can be conveniently presented via its front projection which is a surface in R3 that is immersed except for certain standard singularities. We associate a differential graded algebra (DGA) to L by starting with a cellular decomposition of the base projection to R2 of L that contains the projection of the singular set of L in its 1-skeleton. A collection of generators is associated to each cell, and the differential is determined in a formulaic manner by the nature of the singular set above the boundary of a cell. Our cellular DGA is equivalent to the Legendrian contact homology DGA of L whose construction was carried out in this setting by Etnyre-Ekholm-Sullivan with the differential defined by counting holomorphic disks in C2 with boundary on the Lagrangian projection of L. Equivalence of our DGA with LCH is established using work of Ekholm on gradient flow trees. Time permitting, we will discuss constructions of augmentations of the cellular DGA from two parameter families of functions.