Seminars and Colloquia by Series

Wednesday, October 28, 2009 - 14:00 , Location: Skiles 269 , Mrinal Ragupathi , Vanderbilt University , Organizer:
Given points $z_1,\ldots,z_n$ on a finite open Riemann surface $R$ and complex scalars $w_1,\ldots,w_n$, the Nevanlinna-Pick problem is to determine conditions for the existence of a holomorphic map $f:R\to \mathbb{D}$ such that $f(z_i) = w_i$. In this talk I will provide some background on the  problem, and then discuss the extremal case. We will try to discuss how a method of McCullough can be used to provide more qualitative information about the solution. In particular, we will show that extremal cases are precisely the ones for which the solution is unique.
Friday, October 23, 2009 - 14:00 , Location: Skiles 269 , Doug Hardin , Vanderbilt University , Organizer: Jeff Geronimo
I will review recent and classical results concerning the asymptotic properties (as N --> \infty) of 'ground state' configurations of N particles restricted to a d-dimensional compact set A\subset {\bf R}^p that minimize the Riesz s-energy functional \sum_{i\neq j}\frac{1}{|x_{i}-x_{j}|^{s}} for s>0. Specifically, we will discuss the following (1) For s < d, the ground state configurations have limit distribution as N --> \infty given by the equilibrium measure \mu_s, while the first order asymptotic growth of the energy of these configurations is given by the 'transfinite diameter' of A. (2) We study the behavior of \mu_s as s approaches the critical value d (for s\ge d, there is no equilibrium measure). In the case that A is a fractal, the notion of 'order two density' introduced by Bedford and Fisher naturally arises. This is joint work with M. Calef. (3) As s --> \infty, ground state configurations approach best-packing configurations on A. In work with S. Borodachov and E. Saff we show that such configurations are asymptotically uniformly distributed on A.
Wednesday, October 21, 2009 - 14:00 , Location: Skiles 269 , Yuliya Babenko , Sam Houston State University , Organizer:
In this talk we will discuss Kolmogorov and Landau type inequalities for the derivatives.  These are the inequalities which estimate the norm of the intermediate derivative of a function (defined on an interval, R_+, R, or their multivariate analogs) from some class in terms of the norm of the function itself and norm of its highest derivative. We shall present several new results on sharp inequalities of this type for special classes of functions (multiply monotone and absolutely monotone) and sequences. We will also highlight some of the techniques involved in the proofs (comparison theorems) and discuss several applications.
Thursday, October 15, 2009 - 14:00 , Location: Skiles 255 **NOTE ROOM CHANGE AND SPECIAL DAY** , Lillian Wong , University of Oklahoma , Organizer:
In this talk, I will discuss some results obtained in my Ph.D. thesis. First, the point mass formula will be introduced. Using the formula, we shall see how the asymptotics of orthogonal polynomials relate to the perturbed Verblunsky coefficients. Then I will discuss two classes of measures on the unit circle -- one with Verblunsky coefficients \alpha_n --> 0 and the other one with \alpha_n --> L (non-zero) -- and explain the methods I used to tackle the point mass problem involving these measures. Finally, I will discuss the point mass problem on the real line. For a long time it was believed that point mass perturbation will generate exponentially small perturbation on the recursion coefficients. I will demonstrate that indeed there is a large class of measures such that that proposition is false.
Wednesday, October 14, 2009 - 14:00 , Location: Skiles 269 , Marcus Carlsson , Purdue University , Organizer:
Given an "infinite symmetric matrix" W we give a simple condition, related to the shift operator being expansive on a certain sequence space, under which W is positive. We apply this result to AAK-type theorems for generalized Hankel operators, providing new insights related to previous work by S. Treil and A. Volberg. We also discuss applications and open problems.
Wednesday, October 7, 2009 - 14:00 , Location: Skiles 269 , Ramazan Tinaztepe , Georgia Tech , Organizer: Plamen Iliev
Modulation spaces are a class of Banach spaces which provide a quantitative time-frequency analysis of functions via the Short-Time Fourier Transform. The modulation spaces are the "right" spaces for time-frequency analysis andthey occur in many problems in the same way that Besov Spaces are attached to wavelet theory and issues of smoothness. In this seminar, I will talk about embeddings of modulation Spaces into BMO or VMO (the space of functions of bounded or vanishing mean oscillation, respectively ). Membership in VMO is central to the  Balian-Low Theorem, which is a cornerstone of time-frequency analysis.
Wednesday, September 30, 2009 - 14:00 , Location: Skiles 269 , Plamen Illiev , Georgia Tech , Organizer:
The trigonometric Grassmannian parametrizes specific solutions of the KP hierarchy which correspond to rank one solutions of a differential-difference bispectral problem. It can be considered as a completion of the phase spaces of the trigonometric Calogero-Moser particle system or the rational Ruijsenaars-Schneider system. I will describe the characterization of this Grassmannian in terms of representation theory of a suitable difference W-algebra. Based on joint work with L. Haine and E. Horozov.
Wednesday, September 23, 2009 - 14:00 , Location: Skiles 269 , Maxym Yattselev , Vanderbilt University , Organizer:
We consider multipoint Padé approximation to Cauchy transforms of complex measures. First, we recap that if the support of a measure is an analytic Jordan arc and if the measure itself is absolutely continuous with respect to the equilibrium distribution of that arc with Dini-continuous non-vanishing density, then the diagonal multipoint Padé approximants associated with appropriate interpolation schemes converge locally uniformly to the approximated Cauchy transform in the complement of the arc. Second, we show that this convergence holds also for measures whose Radon–Nikodym derivative is a Jacobi weight modified by a Hölder continuous function. The asymptotics behavior of Padé approximants is deduced from the analysis of underlying non–Hermitian orthogonal polynomials, for which the Riemann–Hilbert–∂ method is used.
Wednesday, September 9, 2009 - 14:00 , Location: Skiles 269 , Shannon Bishop , Georgia Tech , Organizer:
We describe how time-frequency analysis is used to analyze boundedness and Schatten class properties of pseudodifferential operators and Fourier integral operators.
Wednesday, September 2, 2009 - 14:00 , Location: Skiles 269 , Michael Lacey , Georgia Institute of Technology , Organizer:
We will survey recent developments in the area of two weight inequalities, especially those relevant for singular integrals.  In the second lecture, we will go into some details of recent characterizations of maximal singular integrals of the speaker, Eric Sawyer, and Ignacio Uriate-Tuero.

Pages