Seminars and Colloquia by Series

Algebraic and topological properties of big mapping class groups

Series
Geometry Topology Seminar
Time
Friday, July 7, 2017 - 10:30 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nick VlamisMichigan
There has been a recent interest in studying surfaces of infinite type, i.e. surfaces with infinitely-generated fundamental groups. In this talk, we will focus on their mapping class groups, often called big mapping class groups. In contrast to the finite-type case, there are many open questions regarding the basic algebraic and topological properties of big mapping class groups. I will discuss several such questions and provide some answers. In particular, I will discuss automorphism groups of mapping class groups as well as relations between topological invariants of a surface and algebraic invariants of its mapping class group. The results in the talk are based on recent joint work with Priyam Patel and ongoing joint work with Javier Aramayona and Priyam Patel.

Surjective homomorphism between surface braid groups

Series
Geometry Topology Seminar
Time
Tuesday, June 27, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Lei ChenUniversity of Chicago
I will talk about homomorphisms between surface braid groups. Firstly, we will see that any surjective homomorphism from PB_n(S) to PB_m(S) factors through a forgetful map. Secondly, we will compute the automorphism group of PB_n(S). It turns out to be the mapping class group when n>1.

Experimental statistics of veering triangulations.

Series
Geometry Topology Seminar
Time
Friday, June 23, 2017 - 10:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
William WordenTemple University
Certain fibered hyperbolic 3-manifolds admit a layered veering triangulation, which can be constructed algorithmically given the stable lamination of the monodromy. These triangulations were introduced by Agol in 2011, and have been further studied by several others in the years since. We present experimental results which shed light on the combinatorial structure of veering triangulations, and its relation to certain topological invariants of the underlying manifold. We will begin by discussing essential background material, including hyperbolic manifolds and ideal triangulations, and more particularly fibered hyperbolic manifolds and the construction of the veering triangulation.

Normal closures of mapping classes

Series
Geometry Topology Seminar
Time
Tuesday, June 20, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dan Margalit and Justin LanierGeorgia Tech
We give a simple geometric criterion for an element to normally generate the mapping class group of a surface. As an application of this criterion, we show that when a surface has genus at least 3, every periodic mapping class except for the hyperelliptic involution normally generates. We also give examples of pseudo-Anosov elements that normally generate when genus is at least 2, answering a question of D. Long.

Concordance and Dehn surgery

Series
Geometry Topology Seminar
Time
Monday, May 8, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tye LidmanNCSU
We will discuss a relation between some notions in three-dimensional topology and four-dimensional aspects of knot theory.

Joint GT-UGA Seminar at UGA

Series
Geometry Topology Seminar
Time
Monday, April 24, 2017 - 14:30 for 2.5 hours
Location
UGA Room 303
Speaker
Alexandru Oancea and Basak GurelJussieu and University of Central Florida
Alexandru Oancea: Title: Symplectic homology for cobordisms Abstract: Symplectic homology for a Liouville cobordism - possibly filled at the negative end - generalizes simultaneously the symplectic homology of Liouville domains and the Rabinowitz-Floer homology of their boundaries. I will explain its definition, some of its properties, and give a sample application which shows how it can be used in order to obstruct cobordisms between contact manifolds. Based on joint work with Kai Cieliebak and Peter Albers. Basak Gürel: Title: From Lusternik-Schnirelmann theory to Conley conjecture Abstract: In this talk I will discuss a recent result showing that whenever a closed symplectic manifold admits a Hamiltonian diffeomorphism with finitely many simple periodic orbits, the manifold has a spherical homology class of degree two with positive symplectic area and positive integral of the first Chern class. This theorem encompasses all known cases of the Conley conjecture (symplectic CY and negative monotone manifolds) and also some new ones (e.g., weakly exact symplectic manifolds with non-vanishing first Chern class). The proof hinges on a general Lusternik–Schnirelmann type result that, under some natural additional conditions, the sequence of mean spectral invariants for the iterations of a Hamiltonian diffeomorphism never stabilizes. Based on joint work with Viktor Ginzburg.

Asymptotic translation lengths of point-pushing pseudo-Anosovs on the curve complex

Series
Geometry Topology Seminar
Time
Monday, April 17, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Chaohui ZhangMorehouse College
Let S be a Riemann surface of type (p,1), p > 1. Let f be a point-pushing pseudo-Anosov map of S. Let t(f) denote the translation length of f on the curve complex for S. According to Masur-Minsky, t(f) has a uniform positive lower bound c_p that only depends on the genus p.Let F be the subgroup of the mapping class group of S consisting of point-pushing mapping classes. Denote by L(F) the infimum of t(f) for f in F pseudo-Anosov. We know that L(F) is it least c_p. In this talk we improve this result by establishing the inequalities .8 <= L(F) <= 1 for every genus p > 1.

Connectivity of the set of triangulations of a 3- or 4-manifold

Series
Geometry Topology Seminar
Time
Friday, April 14, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Henry SegermanOklahoma State University
This is joint work with Hyam Rubinstein. Matveev and Piergallini independently show that the set of triangulations of a three-manifold is connected under 2-3 and 3-2 Pachner moves, excepting triangulations with only one tetrahedron. We give a more direct proof of their result which (in work in progress) allows us to extend the result to triangulations of four-manifolds.

Lower bound on the minimal number of periodic Reeb orbits

Series
Geometry Topology Seminar
Time
Wednesday, April 12, 2017 - 14:05 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jean GuttUGA
I will present the recent result with P.Albers and D.Hein that every graphical hypersurface in a prequantization bundle over a symplectic manifold M pinched between two circle bundles whose ratio of radii is less than \sqrt{2} carries either one short simple periodic orbit or carries at least cuplength(M)+1 simple periodic Reeb orbits.

Planar Legendrian graphs

Series
Geometry Topology Seminar
Time
Monday, April 10, 2017 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Peter Lambert-ColeIndiana University
A foundational result in the study of contact geometry and Legendrian knots is Eliashberg and Fraser's classification of Legendrian unknots They showed that two homotopy-theoretic invariants - the Thurston-Bennequin number and rotation number - completely determine a Legendrian unknot up to isotopy. Legendrian spatial graphs are a natural generalization of Legendrian knots. We prove an analogous result for planar Legendrian graphs. Using convex surface theory, we prove that the rotation invariant and Legendrian ribbon are a complete set of invariants for planar Legendrian graphs. We apply this result to completely classify planar Legendrian embeddings of the Theta graph. Surprisingly, this classification shows that Legendrian graphs violate some proven and conjectured properties of Legendrian knots. This is joint work with Danielle O'Donnol.​​

Pages