Seminars and Colloquia by Series

Finite Generation of the Terms of the Johnson Filtration

Series
Geometry Topology Student Seminar
Time
Wednesday, January 17, 2024 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Dan MinahanGeorgia Tech

The Johnson filtration is a filtration of the mapping class group induced by the action of the mapping class group on the lower central series of the fundamental group of a surface.  A theorem of Johnson tells us that the first term of this filtration, called the Torelli group, is finitely generated for surfaces of genus at least 3.  We will explain work of Ershov—He and Church—Ershov—Putman, which uses Johnson's result to show that the kth term of the Johnson filtration is finitely generated for surfaces of genus g at least 2k - 1.  Time permitting, we will also discuss some extensions of these ideas.  In particular, we will explain how to show that the terms of the Johnson filtration are finitely presented assuming the Torelli group is finitely presented.

Higher higher Teichmüller spaces from tilings of convex domains

Series
Geometry Topology Student Seminar
Time
Wednesday, November 29, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex NolteRice University

A sequence of remarkable results in recent decades have shown that for a surface group H there are many Lie groups G and connected components C of Hom(H,G) consisting of discrete and faithful representations. These are known as higher Teichmüller spaces. With two exceptions, all known constructions of higher Teichmüller spaces work only for surface groups. This is an expository talk on the remarkable paper Convexes Divisibles III (Benoist ‘05), in which the first construction of higher Teichmüller spaces that works for some non-surface-groups was discovered. The paper implies the fundamental group H’ of any closed hyperbolic n-manifold has a higher Teichmüller space C’ in PGL(n+1,R). This is proved by showing any element of C’ preserves a convex domain in RP^n with a group-invariant tiling.

"No (Con)way!"

Series
Geometry Topology Student Seminar
Time
Wednesday, November 15, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Daniel HwangGeorgia Tech

 This talk is a summary of a summary. We will be going over Jen Hom's 2024 Levi L. Conant Prize Winning Article "Getting a handle on the Conway knot," which discusses Lisa Piccirillo's renowned 2020 paper proving the Conway knot is not slice. In this presentation, we will go over what it means for a knot to be slice, past attempts to classify the Conway knot with knot invariants, and Piccirillo's approach of constructing a knot with the same knot trace as the Conway knot. This talk is designed for all audiences and NO prior knowledge of topology or knot theory is required. Trust me, I'm (k)not a topologist.

Introduction to Vassiliev Invariants

Series
Geometry Topology Student Seminar
Time
Wednesday, November 8, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Alex EldridgeGeorgia Tech

Vassiliev knot invariants, or finite-type invariants, are a broad class of knot invariants resulting from extending usual invariants to knots with transverse double points. We will show that the Conway and Jones polynomials are fully described by Vassiliev invariants. We will discuss the fundamental theorem of Vassiliev invariants, relating them to the algebra of chord diagrams and weight systems. Time permitting, we will also discuss the Kontsevich integral, the universal Vassiliev invariant.

Classifying Legendrian Positive Torus Knots

Series
Geometry Topology Student Seminar
Time
Wednesday, November 1, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Tom RodewaldGeorgia Tech

Legendrian knots are an important kind of knot in contact topology. One of their invariants,  the Thurston-Bennequin number, has an upper bound for any given knot type, called max-tb. Using convex surface theory, we will compute the max-tb of positive torus knots and show that two max-tb positive torus knots are Legendrian isotopic. If time permits, we will show that any non max-tb positive torus knot is obtained from the unique max-tb positive torus knot by a sequence of stabilizations. 

Meet My Muse: the MMM classes

Series
Geometry Topology Student Seminar
Time
Wednesday, October 25, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jaden AiGeorgia Tech

Mapping class groups of surfaces in general have cohomology that is hard to compute. Meanwhile, within something called the cohomologically-stable range, a family of characteristic classes called the MMM classes (of surface bundles) is enough to generate this cohomology and thus plays an important role for understanding both the mapping class group and surface bundles. Moreover, constructing the so-called Atiyah-Kodaira manifold provides the setting to prove that these MMM classes are non-trivial. Most of this beginner-friendly talk will be dedicated to proving the non-triviality of the first MMM class. Maybe as a side quest, we will also give a crash course on the geometric viewpoint of (co)homology and then apply this viewpoint to understand the constructions and the proofs.

Genus 2 Lefschetz Fibrations

Series
Geometry Topology Student Seminar
Time
Wednesday, October 11, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sierra KnavelGeorgia Tech

In this talk, we will give background on Lefschetz fibrations and their relationship to symplectic 4-manifolds. We will then discuss results on their fundamental groups. Genus-2 Lefschetz fibrations are of particular interest because of how much we know and don't know about them. We will see what fundamental groups a genus-2 Lefschetz fibration can have and what questions someone might ask when studying these objects.

An introduction to Morse theory and Morse homology

Series
Geometry Topology Student Seminar
Time
Wednesday, September 20, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Akash NarayananGeorgia Institute of Technology

Morse theory analyzes the topology of a smooth manifold by studying the behavior of its real-valued functions. From this, one obtains a well-behaved homology theory which provides further information about the manifold and places constraints on the smooth functions it admits. This idea has proven to be useful in approaching topological problems, playing an essential role in Smale's solution to the generalized Poincare conjecture in dimensions greater than 4. Morse theory has been adapted to study complex manifolds, and even algebraic varieties over more general fields, but the underlying principles remain the same. In this talk, we will define the basic notions of Morse theory and describe some of the fundamental results. Then we will define Morse homology and discuss some important corollaries and applications. 

An Interactive Introduction to Surface Bundles

Series
Geometry Topology Student Seminar
Time
Wednesday, September 13, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Jaden WangGeorgia Tech

Surface bundles lie in the intersection of many areas of math: algebraic topology, 2–4 dimensional topology, geometric group theory, algebraic geometry, and even number theory! However, we still know relatively little about surface bundles, especially compared to vector bundles. In this interactive talk, I will present the general (and beautiful) fiber bundle theory, including characteristic classes, as a starting point, and you the audience will get to specialize the general theory to surface bundles, with rewards! The talk aims to be accessible to anyone who had exposure to algebraic topology. This is also part one of three talks about surface bundles I will give this semester.

Spheres can knot in 4 dimensions

Series
Geometry Topology Student Seminar
Time
Wednesday, September 6, 2023 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Sean EliGeorgia Tech

You are probably familiar with the concept of a knot in 3 space: a tangled string that can't be pushed and pulled into an untangled one. We briefly show how to prove mathematical knots are in fact knotted, and discuss some conditions which guarantee unknotting. We then give explicit examples of knotted 2-spheres in 4 space, and discuss 2-sphere version of the familiar theorems. A large part of the talk is practice with visualizing objects in 4 dimensional space. We will also prove some elementary facts to give a sense of what working with these objects feels like. Time permitting we will describe know knotted 2-spheres were used to give evidence for the smooth 4D Poincare conjecture, one of the guiding problems in the field.

Pages