Seminars and Colloquia by Series

Feedbackless Information Gathering on Trees

Series
Graph Theory Seminar
Time
Thursday, April 3, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Kevin CostelloUniversity of California, Riverside, CA
Suppose that each node of a rooted tree has a message that it wants to pass up the tree to the root. How can we design a protocol that guarantees all messages (eventually) reach there without being interfered with by other messages, if the nodes themselves do not know the underlying structure of the tree, or even whether their previous messages were successfully transmitted or not? I will describe (near optimal) answers to several variations of this problem, based on joint work with Marek Chrobak (UCR), Laszek Gasieniec (Liverpool) and Dariusz Kowalski (Liverpool).

Odd case of Rota's bases conjecture

Series
Graph Theory Seminar
Time
Tuesday, March 25, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Martin LoeblCharles University
(Alon-Tarsi Conjecture): For even n, the number of even nxn Latin squares differs from the number of odd nxn Latin squares. (Stones-Wanless, Kotlar Conjecture): For all n, the number of even nxn Latin squares with the identity permutation as first row and first column differs from the number of odd nxn Latin squares of this type. (Aharoni-Berger Conjecture): Let M and N be two matroids on the same vertex set, and let A1,...,An be sets of size n + 1 belonging to both M and N. Then there exists a set belonging to both M and N and meeting all Ai. We prove equivalence of the first two conjectures and a special case of the third one and use these results to show that Alon-Tarsi Conjecture implies Rota's bases conjecture for odd n and any system of n non-singular real valued matrices where one of them is non-negative and the remaining have non-negative inverses.Joint work with Ron Aharoni.

On the directed cycle double cover conjecture

Series
Graph Theory Seminar
Time
Thursday, March 13, 2014 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Andrea JimenezUniversity of Sao Paulo and Math, GT
In this talk, we discuss our recent progress on the famous directed cycle double cover conjecture of Jaeger. This conjecture asserts that every 2-connected graph admits a collection of cycles such that each edge is in exactly two cycles of the collection. In addition, it must be possible to prescribe an orientation to each cycle so that each edge is traversed in both ways. We plan to define the class of weakly robust trigraphs and prove that a connectivity augmentation conjecture for this class implies general directed cycle double cover conjecture. This is joint work with Martin Loebl.

Riemann-Roch theory via partial graph orientations

Series
Graph Theory Seminar
Time
Thursday, March 6, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Spencer BackmanMath, GT
This talk is a sequel to the speaker's previous lecture given in the January 31st Combinatorics Seminar, but attendance at the first talk is not assumed. We begin by carefully reviewing our generalized cycle-cocyle reversal system for partial graph orientations. A self contained description of Baker and Norin's Riemann-Roch formula for graphs is given using their original chip-firing language. We then explain how to reinterpret and reprove this theorem using partial graph orientations. In passing, the Baker-Norin rank of a partial orientation is shown to be one less than the minimum number of directed paths which need to be reversed in the generalized cycle-cocycle reversal system to produce an acyclic partial orientation. We conclude with an overview of how these results extend to the continuous setting of metric graphs (abstract tropical curves).

Packing disjoint A-paths with specified endpoints

Series
Graph Theory Seminar
Time
Thursday, February 27, 2014 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Paul WollanUniversity of Rome "La Sapienza"
Consider a graph G and a specified subset A of vertices. An A-path is a path with both ends in A and no internal vertex in A. Gallai showed that there exists a min-max formula for the maximum number of pairwise disjoint A-paths. More recent work has extended this result, considering disjoint A-paths which satisfy various additional properties. We consider the following model. We are given a list of {(s_i, t_i): 0< i < k} of pairs of vertices in A, consider the question of whether there exist many pairwise disjoint A-paths P_1,..., P_t such that for all j, the ends of P_j are equal to s_i and t_i for some value i. This generalizes the disjoint paths problem and is NP-hard if k is not fixed. Thus, we cannot hope for an exact min-max theorem. We further restrict the question, and ask if there either exist t pairwise disjoint such A-paths or alternatively, a bounded set of f(t) vertices intersecting all such paths. In general, there exist examples where no such function f(t) exists; we present an exact characterization of when such a function exists. This is joint work with Daniel Marx.

The minimum number of nonnegative edges in hypergraphs

Series
Graph Theory Seminar
Time
Wednesday, November 13, 2013 - 16:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Hao HuangInstitute for Advanced Study and DIMACS
An r-unform n-vertex hypergraph H is said to have the Manickam-Miklos-Singhi (MMS) property if for every assignment of weights to its vertices with nonnegative sum, the number of edges whose total weight is nonnegative is at least the minimum degree of H. In this talk I will show that for n>10r^3, every r-uniform n-vertex hypergraph with equal codegrees has the MMS property, and the bound on n is essentially tight up to a constant factor. An immediate corollary of this result is the vector space Manickam-Miklos-Singhi conjecture which states that for n>=4k and any weighting on the 1-dimensional subspaces of F_q^n with nonnegative sum, the number of nonnegative k-dimensional subspaces is at least ${n-1 \brack k-1}_q$. I will also discuss two additional generalizations, which can be regarded as analogues of the Erdos-Ko-Rado theorem on k-intersecting families. This is joint work with Benny Sudakov.

Independent sets in triangle-free planar graphs

Series
Graph Theory Seminar
Time
Tuesday, September 24, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zdenek DvorakCharles University
By the 4-color theorem, every planar graph on n vertices has an independent set of size at least n/4. Finding a simple proof of this fact is a long-standing open problem. Furthermore, no polynomial-time algorithm to decide whether a planar graph has an independent set of size at least (n+1)/4 is known. We study the analogous problem for triangle-free planar graphs. By Grotzsch' theorem, each such graph on n vertices has an independent set of size at least n/3, and this can be easily improved to a tight bound of (n+1)/3. We show that for every k, a triangle-free planar graph of sufficiently large tree-width has an independent set of size at least (n+k)/3, thus giving a polynomial-time algorithm to decide the existence of such a set. Furthermore, we show that there exists a constant c < 3 such that every planar graph of girth at least five has an independent set of size at least n/c.Joint work with Matthias Mnich.

Well-quasi-ordering of directed graphs

Series
Graph Theory Seminar
Time
Thursday, September 19, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Paul WollanSchool of Mathematics, Georgia Tech and University of Rome, Italy
While Robertson and Seymour showed that graphs are well-quasi-ordered under the minor relation, it is well known that directed graphs are not. We will present an exact characterization of the minor-closed sets of directed graphs which are well-quasi-ordered. This is joint work with M. Chudnovsky, S. Oum, I. Muzi, and P. Seymour.

Towards the directed cycle double cover conjecture

Series
Graph Theory Seminar
Time
Tuesday, September 10, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Martin LoeblCharles University
We prove the dcdc conjecture in a class of lean fork graphs, argue that this class is substantial and show a path towards the complete solution. Joint work with Andrea Jimenez.

Quasirandomness of permutations

Series
Graph Theory Seminar
Time
Thursday, April 18, 2013 - 12:05 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Daniel KralUniversity of Warwick
A systematic study of large combinatorial objects has recently led to discovering many connections between discrete mathematics and analysis. In this talk, we apply analytic methods to permutations. In particular, we associate every sequence of permutations with a measure on a unit square and show the following: if the density of every 4-element subpermutation in a permutation p is 1/4!+o(1), then the density of every k-element subpermutation is 1/k!+o(1). This answers a question of Graham whether quasirandomness of a permutation is captured by densities of its 4-element subpermutations. The result is based on a joint work with Oleg Pikhurko.

Pages