Seminars and Colloquia by Series

Maximum diameter of $k$-colorable graphs

Series
Graph Theory Seminar
Time
Tuesday, October 27, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Éva CzabarkaUniversity of South Carolina

Erdős, Pach, Pollack and Tuza conjectured that for fixed integers $r$, $\delta \ge 2$, for any connected graph $G$ with minimum degree $\delta$ and order $n$:

(i) If $G$ is $K_{2r}$-free and $\delta$ is a multiple of $(r-1)(3r+2)$, then, as $n$ tends to infinity, the diameter of $G$ is at most $\frac{2(r-1)(3r+2)}{(2r^2-1)} \cdot \frac{n}{\delta} + O(1)$.

(ii) If $G$ is $K_{2r+1}$-free and $\delta$ is a multiple of $3r-1$, then, as $n$ tends to infinity, the diameter of $G$ is at most $\frac{3r-1}{r} \cdot \frac{n}{\delta} + O(1)$.

They created examples that show that the above conjecture, if true, is tight.

No more progress has been reported on this conjecture, except that for $r=2$ in (ii), under a stronger hypothesis ($4$-colorable instead of $K_5$-free), Czabarka, Dankelman and Székely showed that for every connected $4$-colorable graph $G$ of order $n$ and minimum degree $\delta \ge 1$, the diameter of $G$ is at most $\frac{5n}{2\delta} - 1$.

For every $r>1$ and $\delta \ge 2(r-1)$, we create $K_{2r}$-free graphs with minimum degree $\delta$ and diameter $\frac{(6r-5)n}{(2r-1)\delta+2r-3}+O(1)$, which are counterexamples to the conjecture for every $r>1$ and $\delta > 2(r-1)(3r+2)(2r-3)$. We also prove positive results under a stronger hypothesis, $k$-colorability, instead of being $K_{k+1}$-free. We show that the diameter of connected $k$-colorable graphs with minimum degree at least $\delta$ and order $n$ is at most $\left(3-\frac{1}{k-1}\right)\frac{n}{\delta}+O(1)$, while for $k=3$, it is at most $\frac{57n}{23\delta}+O(1)$.

This is joint work with Inne Singgih and László A. Székely.

Generalized sum-product phenomena and a related coloring problem

Series
Graph Theory Seminar
Time
Tuesday, October 20, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Yifan JingUniversity of Illinois at Urbana-Champaign

In the first part of the talk, I will show that for two bivariate polynomials $P(x,y)$ and $Q(x,y)$ with coefficients in fields with char 0 to simultaneously exhibit small expansion, they must exploit the underlying additive or multiplicative structure of the field in nearly identical fashion. This in particular generalizes the main result of Shen and yields an Elekes-Ronyai type structural result for symmetric nonexpanders, resolving a question mentioned by de Zeeuw (Joint with S. Roy and C-M. Tran). In the second part of the talk, I will show how this sum-product phenomena helps us avoid color-isomorphic even cycles in proper edge colorings of complete graphs (Joint with G. Ge, Z. Xu, and T. Zhang).

Perfect matchings in random hypergraphs

Series
Graph Theory Seminar
Time
Tuesday, October 13, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Matthew KwanStanford University

For positive integers $d < k$ and $n$ divisible by $k$, let $m_d(k,n)$ be the minimum $d$-degree ensuring the existence of a perfect matching in a $k$-uniform hypergraph. In the graph case (where $k=2$), a classical theorem of Dirac says that $m_1(2,n) = \lceil n/2\rceil$. However, in general, our understanding of the values of $m_d(k,n)$ is still very limited, and it is an active topic of research to determine or approximate these values. In the first part of this talk, we discuss a new "transference" theorem for Dirac-type results relative to random hypergraphs. Specifically, we prove that a random $k$-uniform hypergraph $G$ with $n$ vertices and "not too small" edge probability $p$ typically has the property that every spanning subgraph with minimum $d$-degree at least $(1+\varepsilon)m_d(k,n)p$ has a perfect matching. One interesting aspect of our proof is a "non-constructive" application of the absorbing method, which allows us to prove a bound in terms of $m_d(k,n)$ without actually knowing its value.

The ideas in our work are quite powerful and can be applied to other problems: in the second part of this talk we highlight a recent application of these ideas to random designs, proving that a random Steiner triple system typically admits a decomposition of almost all its triples into perfect matchings (that is to say, it is almost resolvable).

Joint work with Asaf Ferber.

Inducibility of graphs and tournaments

Series
Graph Theory Seminar
Time
Tuesday, October 6, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Florian PfenderUniversity of Colorado Denver

A classical question in extremal graph theory asks to maximize the number of induced copies of a given graph or tournament in a large host graph, often expressed as a density. A simple averaging argument shows that the limit of this density exists as the host graph is allowed to grow. Razborov's flag algebra method is well suited to generate bounds on these quantities with the help of semidefinite programming. We will explore this method for a few small examples, and see how to modify it to fit our questions. The extremal graphs show some beautiful structures, sometimes fractal like, sometimes quasi random and sometimes even a combination of both.

Breaking the degeneracy barrier for coloring graphs with no $K_t$ minors

Series
Graph Theory Seminar
Time
Tuesday, September 15, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://us04web.zoom.us/j/77238664391. For password, please email Anton Bernshteyn (bahtoh ~at~ gatech.edu)
Speaker
Zi-Xia SongUniversity of Central Florida

Hadwiger's conjecture from 1943 states that every graph with no $K_t$ minor is $(t-1)$-colorable for every $t\ge 1$. In the early 1980s, Kostochka and Thomason independently proved that every graph with no $K_t$ minor has average degree $O(t\sqrt{\log t})$ and hence is $O(t\sqrt{\log t})$-colorable.  In this talk, we show that every graph with no $K_t$ minor is $O(t(\log t)^{\beta})$-colorable for every $\beta > 1/4$, making the first improvement on the order of magnitude of the Kostochka-Thomason bound. 

This is joint work with  Sergey Norin and Luke Postle.

Unavoidable dense induced subgraphs

Series
Graph Theory Seminar
Time
Tuesday, September 8, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/681348075/???? (replace ???? with password). For password, please email Anton Bernshteyn (bahtoh~at~gatech.edu)
Speaker
Rose McCartyUniversity of Waterloo

Thomassen conjectures that every graph of sufficiently large average degree has a subgraph of average degree at least d and girth at least k, for any d and k. What if we want the subgraph to be induced? Large cliques and bicliques are the obvious obstructions; we conjecture there are no others. We survey results in this direction, and we prove that every bipartite graph of sufficiently large average degree has either K_{d,d} or an induced subgraph of average degree at least d and girth at least 6.

Saturation problems in Ramsey theory, ordered sets and geometry

Series
Graph Theory Seminar
Time
Tuesday, September 1, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/681348075/????. (replace ???? with password) For password, please email Anton Bernshteyn (bahtoh~at~gatech.edu)
Speaker
Zhiyu WangGeorgia Tech

A graph G is F-saturated if G is F-free and G+e is not F-free for any edge not in G. The saturation number of F, is the minimum number of edges in an n-vertex F-saturated graph. We consider analogues of this problem in other settings.  In particular we prove saturation versions of some Ramsey-type theorems on graphs and Dilworth-type theorems on posets. We also consider semisaturation problems, wherein we only require that any extension of the combinatorial structure creates new copies of the forbidden configuration.  In this setting, we prove a semisaturation version of the Erdös-Szekeres theorem on convex k-gons, as well as multiple semisaturation theorems for sequences and posets. Joint work with Gábor Damásdi, Balázs Keszegh, David Malec, Casey Tompkins, and Oscar Zamora.

Distributed algorithms and infinite graphs

Series
Graph Theory Seminar
Time
Tuesday, August 25, 2020 - 15:45 for 1 hour (actually 50 minutes)
Location
https://bluejeans.com/954562826
Speaker
Anton BernshteynGeorgia Tech

In the last twenty or so years, a rich theory has emerged concerning combinatorial problems on infinite graphs endowed with extra structure, such as a topology or a measure. It turns out that there is a close relationship between this theory and distributed computing, i.e., the area of computer science concerned with problems that can be solved efficiently by a decentralized network of processors. In this talk I will outline this relationship and present a number of applications.
 

Anti-Ramsey number of edge-disjoint rainbow spanning trees

Series
Graph Theory Seminar
Time
Thursday, April 9, 2020 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Zhiyu WangUniversity of South Carolina

An edge-colored graph $G$ is called \textit{rainbow} if every edge of $G$ receives a different color. The \textit{anti-Ramsey} number of $t$ edge-disjoint rainbow spanning trees, denoted by $r(n,t)$, is defined as the maximum number of colors in an edge-coloring of $K_n$ containing no $t$ edge-disjoint rainbow spanning trees. Jahanbekam and West [{\em J. Graph Theory, 2016}] conjectured that for any fixed $t$, $r(n,t)=\binom{n-2}{2}+t$ whenever $n\geq 2t+2 \geq 6$. We show their conjecture is true and also determine $r(n,t)$ when $n = 2t+1$. Together with previous results, this gives the anti-Ramsey number of $t$ edge-disjoint rainbow spanning trees for all values of $n$ and $t$. Joint work with Linyuan Lu.

Counting critical subgraphs in k-critical graphs

Series
Graph Theory Seminar
Time
Thursday, October 3, 2019 - 13:30 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jie MaUniversity of Science and Technology of China

A graph is $k$-critical if its chromatic number is $k$ but any its proper subgraph has chromatic number less than $k$. Let $k\geq 4$. Gallai asked in 1984 if any $k$-critical graph on $n$ vertices contains at least $n$ distinct $(k-1)$-critical subgraphs. Improving a result of Stiebitz, Abbott and Zhou proved in 1995 that every such graph contains $\Omega(n^{1/(k-1)})$ distinct $(k-1)$-critical subgraphs. Since then no progress had been made until very recently, Hare resolved the case $k=4$ by showing that any $4$-critical graph on $n$ vertices contains at least $(8n-29)/3$ odd cycles. We mainly focus on 4-critical graphs and develop some novel tools for counting cycles of specified parity. Our main result shows that any $4$-critical graph on $n$ vertices contains $\Omega(n^2)$ odd cycles, which is tight up to a constant factor by infinite many graphs. As a crucial step, we prove the same bound for 3-connected non-bipartite graphs, which may be of independent interest. Using the tools, we also give a very short proof to the Gallai's problem for the case $k=4$. Moreover, we improve the longstanding lower bound of Abbott and Zhou to $\Omega(n^{1/(k-2)})$ for the general case $k\geq 5$. Joint work with Tianchi Yang.

Pages