Seminars and Colloquia by Series

An approach to universality using canonical systems

Series
Math Physics Seminar
Time
Thursday, April 27, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Milivoje LukicRice University

 It is often expected that the local statistical behavior of eigenvalues of some system depends only on its local properties; for instance, the local distribution of zeros of orthogonal polynomials should depend only on the local properties of the measure of orthogonality. This phenomenon is studied using an object called the Christoffel-Darboux kernel. The most commonly studied case is known as bulk universality, where the rescaled limit of Christoffel-Darboux kernels converges to the sine kernel. We will present a new approach which gives for the first time a completely local sufficient condition for bulk universality. This approach is based on a matrix version of the Christoffel-Darboux kernel and the de Branges theory of canonical systems, and it applies to other self-adjoint systems with 2x2 transfer matrices such as continuum Schrodinger and Dirac operators. The talk is based on joint work with Benjamin Eichinger (Technical University Wien) and Brian Simanek (Baylor University).

On the domain of convergence of spherical harmonic expansions

Series
Math Physics Seminar
Time
Thursday, April 27, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and online at https://gatech.zoom.us/j/94065877775
Speaker
Ovidiu CostinOhio State University
We settle a 60 year old question in mathematical physics, namely finding the exact domain of convergence of the spherical harmonic expansions (SHE, expansions at infinity in Legendre polynomials) of the gravitational potential of a planet. These expansions are the main tool in processing satellite data to find information about planet Earth in locations that are inaccessible, as well as the subsurface mass distribution and other quantities, with innumerable practical applications.
Despite many decades of investigation it was not known whether SHE converge all the way to the topography or only in the complement of the so called Brillouin sphere, the smallest sphere enclosing our planet. We show that regardless of the smoothness of the density and topography, short of outright analyticity, the spherical harmonic expansion of the gravitational potential converges exactly in the closure of the exterior of the Brillouin sphere, and convergence below the Brillouin sphere occurs with probability zero. We go further by finding a necessary and sufficient condition for convergence below the Brillouin sphere, which requires a form of analyticity at the highest peak on the planet, which would not hold for any realistic celestial body. Due to power-law corrections to the geometric growth of the coefficients, that we calculate for the first time in this paper, there is some amount of compensation of this divergence. However, with the increased accuracy of modern measurements divergence is bound to result in unacceptably large errors. The SHE can be made convergent though, and used optimally.
These questions turn out to be very delicate and challenging asymptotic analysis ones, which we solve using asymptotic techniques combined with elements of microlocal analysis and resurgence.
-----
Work in collaboration with R.D. Costin, C. Ogle and M. Bevis

Prethermalization and conservation laws in quasi-periodically driven quantum systems

Series
Math Physics Seminar
Time
Thursday, April 20, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005 and online https://gatech.zoom.us/j/96817326631
Speaker
Matteo Gallone and Beatrice LangellaSISSA Trieste, Italy

Understanding the route to thermalization of a physical system is a fundamental problem in statistical mechanics. When a system is initialized far from thermodynamical equilibrium, many interesting phenomena may arise. Among them, a lot of interest is attained by systems subjected to periodic driving (Floquet systems), which under certain circumstances can undergo a two-stage long dynamics referred to as "prethermalization", showing nontrivial physical features. In this talk, we present some prethermalization results for a class of lattice systems with quasi-periodic external driving in time. When the quasi-periodic driving frequency is large enough or the strength of the driving is small enough, we show that the system exhibits a prethermal state for exponentially long times in the perturbative parameter. Moreover, we focus on the case when the unperturbed Hamiltonian admits constants of motion and we prove the quasi-conservation of a dressed version of them. We discuss applications to perturbations of the Fermi-Hubbard model and the quantum Ising chain.

 

Join Zoom Meeting

https://gatech.zoom.us/j/96817326631

 

The Maslov index in spectral theory: an overview.

Series
Math Physics Seminar
Time
Thursday, April 13, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 005
Speaker
Selim SukhtaievAuburn University

This talk is centered around a symplectic approach to eigenvalue problems for systems of ordinary differential operators (e.g., Sturm-Liouville operators, canonical systems, and quantum graphs), multidimensional elliptic operators on bounded domains, and abstract self-adjoint extensions of symmetric operators in Hilbert spaces. The symplectic view naturally relates spectral counts for self-adjoint problems to the topological invariant called the Maslov index. In this talk, the notion of the Malsov index will be introduced in analytic terms and an overview of recent results on its role in spectral theory will be given. 

Anderson localization for quasiperiodic operators with monotone potentials: perturbative and non-perturbative methods.

Series
Math Physics Seminar
Time
Thursday, April 6, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 005
Speaker
Ilya KachkovskiyMichigan State University

The general subject of the talk is spectral theory of discrete (tight-binding) Schrodinger operators on d-dimensional lattices. For operators with periodic potentials, it is known that the spectra of such operators are purely absolutely continuous. For random i.i.d. potentials, such as the Anderson model, it is expected and can be proved in many cases that the spectra are almost surely purely point with exponentially decaying eigenfunctions (Anderson local- ization). Quasiperiodic operators can be placed somewhere in between: depending on the potential sampling function and the Diophantine properties of the frequency and the phase, one can have a large variety of spectral types. We will consider quasiperiodic operators

(H(x)ψ)n =ε(∆ψ)n +f(x+n·ω)ψn, n∈Zd,

where ∆ is the discrete Laplacian, ω is a vector with rationally independent components, and f is a 1-periodic function on R, monotone on (0,1) with a positive lower bound on the derivative and some additional regularity properties. We will focus on two methods of proving Anderson localization for such operators: a perturbative method based on direct analysis of cancellations in the Rayleigh-Schr ̈odinger perturbation series for arbitrary d, and a non?perturbative method based on the analysis of Green?s functions for d = 1, originally developed by S. Jitomirskaya for the almost Mathieu operator.

The talk is based on joint works with S. Krymskii, L. Parnovski, and R. Shterenberg (per- turbative methods) and S. Jitomirskaya (non-perturbative methods).

Vanishing of the anomaly in lattice chiral gauge theory

Series
Math Physics Seminar
Time
Thursday, April 6, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles Room 005 and Zoom Meeting ID: 989 6686 9205
Speaker
Vieri MastropietroUniversity of Milan (Italy)

The anomaly cancellation is a basic property of the Standard Model, crucial for its consistence. We consider a lattice chiral gauge theory of massless Wilson fermions interacting with a non-compact massiveU(1) field coupled with left- and right-handed fermions in four dimensions. We prove in the infinite volume limit, for weak coupling and inverse lattice step of the order of boson mass, that the anomaly vanishes up to subleading corrections and under the same condition as in the continuum. The proof is based on a combination of exact Renormalization Group, non-perturbative decay bounds of correlations and lattice symmetries.

The talk can be accessed via zoom: Meeting ID: 989 6686 9205

Spectral properties of topological insulators with general edges

Series
Math Physics Seminar
Time
Thursday, March 30, 2023 - 13:20 for 1 hour (actually 50 minutes)
Location
Skiles Room 006
Speaker
Xiaowen ZhuUniversity of Washington

Topological insulators are materials that exhibit unique physical properties due to their non-trivial topological order. One of the most notable consequences of this order is the presence of protected edge states as well as closure of bulk spectral gaps, which is known as the bulk-edge correspondence. In this talk, I will discuss the mathematical description of topological insulators and their related spectral properties. The presentation assumes only basic knowledge of spectral theory, and will begin with an overview of Floquet theory, Bloch bundles, and the Chern number. We will then examine the bulk-edge correspondence in topological insulators before delving into our research on closure of bulk spectral gaps for topological insulators with general edges. This talk is based on a joint work with Alexis Drouot.

Infinite dimensional invariant tori for the 1d NLS Equation.

Series
Math Physics Seminar
Time
Thursday, March 30, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 006 (different from usual)
Speaker
Livia CorsiUniversity of Rome 3

In the study of close to integrable Hamiltonian PDEs, a fundamental question is to understand the behavior of  ''typical'' solutions. With this in mind it is natural to study the persistence of almost-periodic solutions and infinite dimensional invariant tori, which are indeed typical in the integrable case. Up to now almost all results in the literature deal with very regular solutions for model PDEs with external parameters giving a large modulation. In this talk I shall discuss a new result constructing Gevrey solutions for models with a weak parameter modulation. 

This is a joint work with G.Gentile and M.Procesi.

Fermi variety for periodic operators and its applications

Series
Math Physics Seminar
Time
Thursday, March 16, 2023 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Wencai LiuTexas A&M University

The Fermi variety plays a crucial role in the study of    periodic operators.  In this talk, I will  first discuss recent works on the irreducibility of  the Fermi variety  for discrete periodic Schr\"odinger  operators.   I will then  discuss the applications to  solve  problems of embedded eigenvalues, isospectrality and quantum ergodicity. 

Continuity properties of the spectral shift function for massless Dirac operators and an application to the Witten index

Series
Math Physics Seminar
Time
Thursday, March 16, 2023 - 12:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Fritz GesztesyBaylor University

 We report on recent results regarding the limiting absorption principle for multi-dimensional, massless Dirac-type operators (implying absence of singularly continuous spectrum) and continuity properties of the associated spectral shift function.

We will motivate our interest in this circle of ideas by briefly describing the connection to the notion of the Witten index for a certain class of non-Fredholm operators.

This is based on various joint work with A. Carey, J. Kaad, G. Levitina, R. Nichols, D. Potapov, F. Sukochev, and D. Zanin.

Pages