Seminars and Colloquia by Series

Monday, February 16, 2009 - 16:30 , Location: Skiles 255 , Jose Amigo , Miguel Hernández University, Spain , Organizer: Yingfei Yi
Permutation entropy was introduced as a complexity measure of time series. Formally, it replaces the symbol blocks in the definition of Shannon entropy by the so-called ordinal patterns –a digest of the ups-and-downs along a finite orbit in a totally ordered state space. Later, this concept was extended to self maps of n-dimensional intervals, in metric and topological versions. It can be proven that, under some assumptions, the metric and topological permutation entropy coincide with their corresponding conventional counterparts. Besides its use as an entropy estimator, permutation entropy has found some interesting applications. We will talk about the detection of determinism in noisy time series, and the recovery of the control parameter from the symbolic sequences of a unimodal map (which allows to cryptanalize some chaotic ciphers).
Monday, February 9, 2009 - 16:30 , Location: Skiles 255 , Zhilan Feng , Department of Mathematics, Purdue University , Organizer: Yingfei Yi
Mathematical models are used to study possible impact of drug treatment of infections with the human immunodeficiency virus type 1 (HIV-1) on the evolution of the pathogen. Treating HIV-infected patients with a combination of several antiretroviral drugs usually contributes to a substantial decline in viral load and an increase in CD4+ T cells. However, continuing viral replication in the presence of drug therapy can lead to the emergence of drug-resistant virus variants, which subsequently results in incomplete viral suppression and a greater risk of disease progression. As different types of drugs (e.g., reverse transcriptase inhibitors,protease inhibitors and entry inhibitors) help to reduce the HIV replication at different stages of the cell infection, infection-age-structured models are useful to more realistically model the effect of these drugs. The model analysis will be presented and the results are linked to the biological questions under investigation. By demonstrating how drug therapy may influence the within host viral fitness we show that while a higher treatment efficacy reduces the fitness of the drug-sensitive virus, it may provide a stronger selection force for drug-resistant viruses which allows for a wider range of resistant strains to invade.
Monday, February 2, 2009 - 16:30 , Location: Skiles 255 , Pablo Laguna , School of Physics, Georgia Tech , Organizer: Yingfei Yi
I will review results from binary black hole simulations and the role that these simulations have in astrophysics and gravitational wave observations. I will then focus on the mathematical and computational aspects of the recent breakthroughs in numerical relativity that have made finding binary black hole solutions to the Einstein field equations an almost routine exercise.
Monday, January 26, 2009 - 16:30 , Location: Skiles 255 , Sergei Pilyugin , University of Florida , Organizer: Yingfei Yi
I will present a generalization of a classical within-host model of a viral infection that includes multiple strains of the virus. The strains are allowed to mutate into each other. In the absence of mutations, the fittest strain drives all other strains to extinction. Treating mutations as a small perturbation, I will present a global stability result of the perturbed equilibrium. Whether a particular strain survives is determined by the connectivity of the graph describing all possible mutations.
Monday, November 17, 2008 - 16:30 , Location: Skiles 255 , Jibin Li , Kunming Univeristy of Science and Technology and Zhejiang Normal University , Organizer: Yingfei Yi
Nonlinear wave phenomena are of great importance in the physical world and have been for a long time a challenging topic of research for both pure and applied mathematicians. There are numerous nonlinear evolution equations for which we need to analyze the properties of the solutions for time evolution of the system. As the first step, we should understand the dynamics of their traveling wave solutions. There exists an enormous literature on the study of nonlinear wave equations, in which exact explicit solitary wave, kink wave, periodic wave solutions and their dynamical stabilities are discussed. To find exact traveling wave solutions for a given nonlinear wave system, a lot of methods have been developed. What is the dynamical behavior of these exact traveling wave solutions? How do the travelling wave solutions depend on the parameters of the system? What is the reason of the smoothness change of traveling wave solutions? How to understand the dynamics of the so-called compacton and peakon solutions? These are very interesting and important problems. The aim of this talk is to give a more systematic account for the bifurcation theory method of dynamical systems to find traveling wave solutions and understand their dynamics for two classes of singular nonlinear traveling systems.
Monday, September 8, 2008 - 16:30 , Location: Skiles 269 , Vadim Yu Kaloshin , Mathematics Department, Penn State , Organizer: Yingfei Yi
Consider the classical Newtonian three-body problem. Call motions oscillatory if as times tends to infinity limsup of maximal distance among the bodies is infinite, while liminf it finite. In the '50s Sitnitkov gave the first rigorous example of oscillatory motions for the so-called restricted three-body problem.  Later in the '60s Alexeev extended this example to the three-body. A long-standing conjecture, probably going back to Kolmogorov, is that oscillatory motions have measure zero. We show that for the Sitnitkov example and for the so-called restricted planar circular three-body problem these motions have maximal Hausdorff dimension. This is a joint work with Anton Gorodetski.
Monday, August 25, 2008 - 16:30 , Location: Skiles 269 , Francisco J. Beron-Vera , Marine & Atmospheric Science, University of Miami , Organizer: Haomin Zhou
The connection between transport barriers and potential vorticity (PV) barriers in PV-conserving flows is investigated with a focus on zonal jets in planetary atmospheres. A perturbed PV-staircase model is used to illustrate important concepts. This flow consists of a sequence of narrow eastward and broad westward zonal jets with a staircase PV structure; the PV-steps are at the latitudes of the cores of the eastward jets. Numerically simulated solutions to the quasigeostrophic PV conservation equation in a perturbed PV-staircase flow are presented. These simulations reveal that both eastward and westward zonal jets serve as robust meridional transport barriers. The surprise is that westward jets, across which the background PV gradient vanishes, serve as robust transport barriers. A theoretical explanation of the underlying barrier mechanism is provided, which relies on recent results relating to the stability of degenerate Hamiltonians under perturbation. It is argued that transport barriers near the cores of westward zonal jets, across which the background PV gradient is small, are found in Jupiter's midlatitude weather layer and in the Earth's summer hemisphere subtropical stratosphere.