Seminars and Colloquia by Series

On eigenvalues of a sum of random matrices

Series
Job Candidate Talk
Time
Wednesday, February 2, 2011 - 13:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Vladislav KarginDepartment of Mathematics, Stanford University
Let H = A+UBU* where A and B are two N-by-N Hermitian matrices and U is a random unitary transformation. When N is large, the point measure of eigenvalues of H fluctuates near a probability measure which depends only on eigenvalues of A and B. In this talk, I will discuss this limiting measure and explain a result about convergence to the limit in a local regime.

State Transitions and Feedback Loops in the Immune Response

Series
Job Candidate Talk
Time
Tuesday, February 1, 2011 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Peter KimUniversity of Utah
The immune system is a complex, multi-layered biological system, making it difficult to characterize dynamically. Perhaps, we can better understand the system’s construction by isolating critical, functional motifs. From this perspective, we will investigate two simple, yet ubiquitous motifs:state transitions and feedback regulation.Numerous immune cells exhibit transitions from inactive to activated states. We focus on the T cell response and develop a model of activation, expansion, and contraction. Our study suggests that state transitions enable T cells to detect change and respond effectively to changes in antigen levels, rather than simply the presence or absence of antigen. A key component of the system that gives rise to this change detector is initial activation of naive T cells. The activation step creates a barrier that separates the slow dynamics of naive T cells from the fast dynamics of effector T cells, allowing the T cell population to compare short-term changes in antigen levels to long-term levels. As a result, the T cell population responds to sudden shifts in antigen levels, even if the antigen were already present prior to the change. This feature provides a mechanism for T cells to react to rapidly expandingsources of antigen, such as viruses, while maintaining tolerance to constant or slowly fluctuating sources of stimulation, such as healthy tissue during growth.For our second functional motif, we investigate the potential role of negative feedback in regulating a primary T cell response. Several theories exist concerning the regulation of primary T cell responses, the most prevalent being that T cells follow developmental programs. We propose an alternative hypothesis that the response is governed by a feedback loop between conventional and adaptive regulatory T cells. By developing a mathematical model, we show that the regulated response is robust to a variety of parameters and propose that T cell responses may be governed by a simple feedback loop rather than by autonomous cellular programs.

A diagrammatic categorification of quantum groups

Series
Job Candidate Talk
Time
Wednesday, January 26, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Aaron LaudaColumbia University
The Jones polynomial is a link invariant that can be understood in terms of the representation theory of the quantum group associated to sl2. This description facilitated a vast generalization of the Jones polynomial to other quantum link and tangle invariants called Reshetikhin-Turaev invariants. These invariants, which arise from representations of quantum groups associated to simple Lie algebras, subsequently led to the definition of quantum 3-manifold invariants. In this talk we categorify quantum groups using a simple diagrammatic calculus that requires no previous knowledge of quantum groups. These diagrammatically categorified quantum groups not only lead to a representation theoretic explanation of Khovanov homology but also inspired Webster's recent work categorifying all Reshetikhin-Turaev invariants of tangles.

Nonnegative Polynomials and Sums of Squares

Series
Job Candidate Talk
Time
Monday, January 24, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Greg BlekhermanUniversity of California, San Diego
A multivariate real polynomial $p$ is nonnegative if $p(x) \geq 0$ for all $x \in R^n$. I will review the history and motivation behind the problem of representing nonnegative polynomials as sums of squares. Such representations are of interest for both theoretical and practical computational reasons. I will present two approaches to studying the differences between nonnegative polynomials and sums of squares. Using techniques from convex geometry we can conclude that if the degree is fixed and the number of variables grows, then asymptotically there are significantly more nonnegative polynomials than sums of squares. For the smallest cases where there exist nonnegative polynomials that are not sums of squares, I will present a complete classification of the differences between these sets based on algebraic geometry techniques.

Regularization for Cox's Proportional Hazards Model With NP-Dimensionality

Series
Job Candidate Talk
Time
Thursday, January 20, 2011 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 005
Speaker
Jelena BradicPrinceton University
High throughput genetic sequencing arrays with thousands of measurements per sample and a great amount of related censored clinical data have increased demanding need for better measurement specific model selection. In this paper we establish strong oracle properties of non-concave penalized methods for non-polynomial (NP) dimensional data with censoring in the framework of Cox's proportional hazards model. A class of folded-concave penalties are employed and both LASSO and SCAD are discussed specifically. We unveil the question under which dimensionality and correlation restrictions can an oracle estimator be constructed and grasped. It is demonstrated that non-concave penalties lead to significant reduction of the "irrepresentable condition" needed for LASSO model selection consistency. The large deviation result for martingales, bearing interests of its own, is developed for characterizing the strong oracle property. Moreover, the non-concave regularized estimator, is shown to achieve asymptotically the information bound of the oracle estimator. A coordinate-wise algorithm is developed for finding the grid of solution paths for penalized hazard regression problems, and its performance is evaluated on simulated and gene association study examples.

Cloaking via change of variables for the Helmholtz equation

Series
Job Candidate Talk
Time
Wednesday, January 12, 2011 - 14:00 for 1 hour (actually 50 minutes)
Location
Skiles 006
Speaker
Nguyen Hoai-MinhCourant Institute of Mathematical Sciences
A region of space is cloaked for a class of measurements if observers are not only unaware of its contents, but also unaware of the presence of the cloak using such measurements. One approach to cloaking is the change of variables scheme introduced by Greenleaf, Lassas, and Uhlmann for electrical impedance tomography and by Pendry, Schurig, and Smith for the Maxwell equations. They used a singular change of variables which blows up a point into the cloaked region. To avoid this singularity, various regularized schemes have been proposed. In this talk I present results related to cloaking via change of variables for the Helmholtz equation using the natural regularized scheme introduced by Kohn, Shen, Vogelius, and Weintein, where the authors used a transformation which blows up a small ball instead of a point into the cloaked region. I will discuss the degree of invisibility for a finite range or the full range of frequencies, and the possibility of achieving perfect cloaking. At the end of my talk, I will also discuss some results related to the wave equation in 3d.

How to get far with only a small effort

Series
Job Candidate Talk
Time
Tuesday, April 13, 2010 - 11:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Rafael de le LlaveDepartment of Mathematics, University of Texas, Austin
Many mechanical systems have the property that some small perturbations can accumulate over time to lead to large effects. Other perturbations just average out and cancel. It is interesting in applications to find out what systems have these properties and which perturbations average out and which ones grows. A complete answer is far from known but it is known that it is complicated and that, for example, number theory plays a role. In recent times, there has been some progress understanding some mechanisms that lead to instability. One can find landmarks that organize the long term behavior and provide an skeleton for the dynamics. Some of these landmarks provide highways along which the perturbations can accumulate.

Global Uniform Risk Bounds for Wavelet Deconvolution Estimators

Series
Job Candidate Talk
Time
Thursday, February 4, 2010 - 15:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Karim LouniciUniversity of Cambridge
We consider the statistical deconvolution problem where one observes $n$ replications from the model $Y=X+\epsilon$, where $X$ is the unobserved random signal of interest and where $\epsilon$ is an independent random error with distribution $\varphi$. Under weak assumptions on the decay of the Fourier transform of $\varphi$ we derive upper bounds for the finite-sample sup-norm risk of wavelet deconvolution density estimators $f_n$ for the density $f$ of $X$, where $f: \mathbb R \to \mathbb R$ is assumed to be bounded. We then derive lower bounds for the minimax sup-norm risk over Besov balls in this estimation problem and show that wavelet deconvolution density estimators attain these bounds. We further show that linear estimators adapt to the unknown smoothness of $f$ if the Fourier transform of $\varphi$ decays exponentially, and that a corresponding result holds true for the hard thresholding wavelet estimator if $\varphi$ decays polynomially. We also analyze the case where $f$ is a 'supersmooth'/analytic density. We finally show how our results and recent techniques from Rademacher processes can be applied to construct global nonasymptotic confidence bands for the density $f$.

Tropical geometry and applications

Series
Job Candidate Talk
Time
Thursday, January 28, 2010 - 16:00 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Josephine YuGeorgia Tech
Tropical geometry can be thought of as geometry over the tropical semiring, which is the set of real numbers together with the operations max and +. Just as ordinary linear and polynomial algebra give rise to convex geometry and algebraic geometry, tropical linear and polynomial algebra give rise to tropical convex geometry and tropical algebraic geometry. I will introduce the basic objects and problems in tropical geometry and discuss some relations with, and applications to, polyhedral geometry, computational algebra, and algebraic geometry.

Group Representation Patterns in Digital Signal Processing

Series
Job Candidate Talk
Time
Tuesday, January 26, 2010 - 11:05 for 1 hour (actually 50 minutes)
Location
Skiles 269
Speaker
Shamgar GurevichInstitute for Advanced Study, Princeton
In the lecture I will explain how various fundamental structures from group representation theory appear naturally in the context of discrete harmonic analysis and can be applied to solve concrete problems from digital signal processing. I will begin the lecture by describing our solution to the problem of finding a canonical orthonormal basis of eigenfunctions of the discrete Fourier transform (DFT). Then I will explain how to generalize the construction to obtain a larger collection of functions that we call "The oscillator dictionary". Functions in the oscillator dictionary admit many interesting pseudo-random properties, in particular, I will explain several of these properties which arise in the context of problems of current interest in communication theory.

Pages