1. Let F be an algebraically closed field, V a finite-dimensional vector space over F, and $T: V \to V$ a linear transformation. Make V into a module over the polynomial ring $F[x]$ by requiring that $x \cdot v = T(v)$. Prove that if T has distinct eigenvalues, then V is a cyclic $F[x]$-module. Is the converse true? Give a proof or counterexample.

Solution: Since T has distinct eigenvalues, there is a basis v_1, \ldots, v_n of V consisting of eigenvectors of T, say $T(v_i) = \lambda_i v_i$ where $\lambda_i \in F$ and the λ_i are distinct. Let

$$v = \sum_{i=1}^n v_i.$$

I claim that the $F[x]$-submodule of V generated by v is all of V, so V is cyclic. To see this, let $f_i = \prod_{k \neq i} (x - \lambda_k)$. Then we have

$$f_i v_j = \begin{cases} 0 & \text{if } i \neq j \\ \prod_{k \neq i} (\lambda_i - \lambda_k) v_i & \text{if } i = j. \end{cases}$$

Thus $f_i v_j$ is a non-zero multiple of v_i. This shows that for all i, v_i is in the submodule of V generated by v. Since the v_i form a basis of V, this submodule is all of V.

To see the converse is false, take $V = F^2$ and $T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. Then V is cyclic (generated by $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$) but T does not have distinct eigenvalues.

2. Let R be a commutative ring and let $I \subset R$ and $J \subset R$ be ideals. Consider the map $\phi: I \otimes_R J \to IJ$ which sends $a \otimes b$ to ab. Prove or give a counterexample to the statements: “ϕ is onto” and “ϕ is one-to-one.”

Solution: By definition, IJ is the set of finite sums of products $\sum_{i=1}^n a_i b_i$ where the $a_i \in I$ and the $b_i \in J$. Such a sum is $\phi(\sum_{i=1}^n a_i \otimes b_i)$, so ϕ is onto.

On the other hand, ϕ is not one-to-one in general. For example, take R to be the polynomial ring $k[x, y]$ over a field k and let $I = J = (x, y)$. Then $x \otimes y - y \otimes x$ obviously maps to zero in I^2, but it is not zero in $I \otimes_R I$. (To see this, we need to produce an R-module M and a bilinear map $\psi: I \times I \to M$ such that $\psi(x, y) \neq \psi(y, x)$. Let $M = k$ with x and y acting as multiplication by 0 and note that to specify an R-module homomorphism $I \to M$ we may assign arbitrary values to x and y. Define two such homomorphisms by $\psi_1(x) = \psi_2(y) = 1$ and $\psi_2(y) = \psi_1(x) = 0$. Then $\psi(f, g) = \psi_1(f)\psi_2(g)$ defines a bilinear map $I \times I \to M$, and we have $\psi(x, y) = 1$ and $\psi(y, x) = 0$ as desired.)
3. Let \(P \) be the \(\mathbb{Z} \)-module \(\mathbb{Z}/2\mathbb{Z} \). Exhibit an exact sequence of \(\mathbb{Z} \)-modules
\[
0 \rightarrow M \rightarrow N \rightarrow N/M \rightarrow 0
\]
such that
\[
0 \rightarrow \text{Hom}(N/M, P) \rightarrow \text{Hom}(N, P) \rightarrow \text{Hom}(M, P) \rightarrow 0
\]
is not exact.

Solution: Let \(M = N = \mathbb{Z} \) and let \(M \rightarrow N \) be multiplication by 2, so that our sequence is
\[
0 \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z}/2\mathbb{Z} \rightarrow 0.
\]
We have \(\text{Hom}(\mathbb{Z}/2\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) = \mathbb{Z}/2\mathbb{Z} \) and
\[
\text{Hom}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z}) \xrightarrow{2} \text{Hom}(\mathbb{Z}, \mathbb{Z}/2\mathbb{Z})
\]
is the zero map, so the Hom-sequence fails to be exact on the right.

4. Find the Galois group of the splitting field for \(f(x) = x^3 - 7 \) over \(K = \mathbb{Q}(\sqrt{-3}) \).

Solution: First of all, note that \(f \) is irreducible over \(\mathbb{Q} \), for example by Eisenstein’s criterion. Next, since \([K : \mathbb{Q}] = 2 \) and \([\mathbb{Q}(\sqrt{7}, \sqrt{-3}) : \mathbb{Q}] = 3 \) are relatively prime, we know that \([\mathbb{Q}(\sqrt[3]{7}, \sqrt{-3}) : \mathbb{Q}] = 6 \) and thus \([\mathbb{Q}(\sqrt[3]{7}, \sqrt{-3}) : K] = 3 \). As \(K \) contains a primitive cube root of unity \(\omega = \frac{1 + \sqrt{-3}}{2} \), \(f \) splits into distinct linear factors over \(K \):
\[
f(x) = (x - \sqrt[3]{7})(x - \omega \sqrt[3]{7})(x - \omega^2 \sqrt[3]{7}).
\]
It follows that \(\mathbb{Q}(\sqrt[3]{7}) \) is a splitting field for \(f \) over \(K \) with Galois group isomorphic to \(\mathbb{Z}/3\mathbb{Z} \).

5. Let \(\zeta \) be a primitive 37th root of unity, and let \(\eta = \zeta + \zeta^{10} + \zeta^{26} \). Determine the Galois group of \(\mathbb{Q}(\eta) \) over \(\mathbb{Q} \).

Solution: It is a standard fact from Galois theory that \(L = \mathbb{Q}(\zeta) \) is Galois over \(\mathbb{Q} \) with Galois group \(G \) isomorphic to the cyclic group \((\mathbb{Z}/37\mathbb{Z})^* \) of order 36. Since \(K = \mathbb{Q}(\eta) \) is a subfield of \(L \), its Galois group \(H \) over \(\mathbb{Q} \) is a quotient of \(G \) and hence is cyclic of degree \([K : \mathbb{Q}] \). It remains to determine this degree. The subset \(\{1, 10, 26\} \subset (\mathbb{Z}/37\mathbb{Z})^* \) is in fact a subgroup. It follows that if \(\sigma \in G \) is the map taking \(\zeta \) to \(\zeta^{10} \), then \(\eta \) is fixed by the action of \(H = \langle \sigma \rangle \), which has order 3. This implies that \(K = \mathbb{Q}(\eta) \) is the fixed field of \(H \) in \(L \). By Galois theory, we have \([L : K] = 3 \) and therefore \([K : \mathbb{Q}] = 12 \).