Problem 1: Prove or give a counterexample to the following statement: Every function $f : [0, +\infty) \to \mathbb{R}$ for which the improper Riemann integral
\[
\int_{0}^{\infty} f(x)\,dx
\]
is convergent is Lebesgue integrable on $[0, +\infty)$.

Solution:
The statement is not true. Consider a function $f(x) = \frac{\sin x}{x}$ for $x > 0$ and $f(0) = 1$. It is easy to show that the improper Riemann integral of f is convergent. However the Lebesgue integrals
\[
\int_{[0, \infty)} f^+, \quad \text{and} \quad \int_{[0, \infty)} f^-
\]
are equal to $+\infty$ so not only is f not integrable but the Lebesgue integral
\[
\int_{[0, \infty)} f
\]
is not even well defined.

Problem 2: Let $(\Omega, \mathcal{F}, \mu)$ be a finite measure space. Let $f_n : \Omega \to \mathbb{R}, n \geq 1$, and $g : \Omega \to \mathbb{R}$ be functions in $L^1(\mu)$ such that there exists a constant $C > 0$ such that
\[
\int_{\Omega} |f_n| \,d\mu \leq C
\]
for all $n \geq 1$. Suppose moreover that
\[
\frac{1}{n} f_n^2 \leq g \quad \text{on} \, \Omega.
\]
Show that
\[
\int_{\Omega} \frac{1}{n} f_n^2 \,d\mu \to 0 \quad \text{as} \quad n \to \infty.
\]

Solution: Denote
\[
A_n = \{ x : |f_n(x)| \geq n^{\frac{3}{4}} \}.
\]
Then
\[\int_{\Omega} \frac{1}{n} f_n^2 d\mu = \int_{A_n} \frac{1}{n} f_n^2 d\mu + \int_{\Omega \setminus A_n} \frac{1}{n} f_n^2 d\mu \leq \int_{A_n} g d\mu + \frac{1}{n^{\frac{2}{3}}} \mu(\Omega). \]

But
\[\mu(A_n) \leq \frac{C}{n^{\frac{2}{3}}} \to 0 \quad \text{as} \quad n \to \infty \]

and therefore, since \(g \in L^1(\mu) \),
\[\int_{A_n} g d\mu \to 0 \quad \text{as} \quad n \to \infty \]

which completes the proof. (The proof of the last convergence can be found in any standard textbook.)

Problem 3: Define
\[B = C([0, 1]) = \{ f : [0, 1] \to \mathbb{R} : f \text{ is continuous} \}, \quad \| f \|_B = \max_{0 \leq x \leq 1} |f(x)| \]
\[C = C^\alpha([0, 1]) = \{ f : [0, 1] \to \mathbb{R} : f \in B \text{ and } \| f \|_C = \| f \|_B + \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^\alpha} < +\infty \}, \]
for some \(\alpha \in (0, 1] \). It is well known that equipped with the norms \(\| \cdot \|_B \) and \(\| \cdot \|_C \), the spaces \(B \) and \(C \) respectively are Banach spaces (normed vector spaces complete with respect to the norm metric). Determine if the unit ball is compact in the spaces \(B \) and \(C \). Is the unit ball of \(C \) compact as a subset of \(B \)?

Solution: Recall that a metric space a set \(X \) is compact if and only if every sequence in \(X \) has a subsequence converging to an element of \(X \).

The unit ball in \(B \) is not compact. For instance consider for \(n \geq 1 \) a sequence of continuous functions \(f_n \) such that \(f_n(x) = 0 \) if \(x \not\in (1/(n + 1), 1/n) \), \(f(1/2(1/(n + 1) + 1/n)) = 1 \), and \(0 \leq f_n(x) \leq 1 \) for \(x \in (1/(n + 1), 1/n) \). Then \(\| f_n \|_A = 1 \) but \(\| f_n - f_m \|_A = 1 \) if \(n \neq m \). Therefore the sequence does not have a convergent subsequence.

The unit ball in \(C \) is also not compact. Consider the sequence of functions
\[f_n(x) = \begin{cases}
\frac{x}{2} & \text{for } 0 \leq x \leq \frac{1}{2n+1}, \\
\frac{1}{2n+1} - \frac{x}{2} & \text{for } \frac{1}{2n+1} \leq x \leq \frac{1}{2n}, \\
0 & \text{otherwise}.
\end{cases} \tag{1} \]

It is easy to see that \(\| f_n \|_C = \frac{1}{2n+2} + \frac{1}{2} \) but if \(n \neq m \) then \(\| f_n - f_m \|_C \geq \frac{1}{2n+2} + 1/2 \) so the sequence does not have a convergent subsequence.

However the unit ball in \(C \) is compact in \(B \). To see this let \(f_n \) be functions such that \(\| f_n \|_C \leq 1 \). Then the functions \(f_n \) are equibounded and equicontinuous and so by the Arzela-Ascoli Theorem there is a subsequence \(f_{n_k} \) that converges uniformly on \([0, 1]\) to a continuous function \(f \). Obviously
\[\| f \|_B = \lim_{k \to \infty} \| f_{n_k} \|_B. \]
It remains to show that $\|f\|_C \leq 1$. Let now $x \neq y$. Then

$$\frac{|f(x) - f(y)|}{|x - y|^\alpha} = \lim_{k \to \infty} \frac{|f_{n_k}(x) - f_{n_k}(y)|}{|x - y|^\alpha} \leq \lim_{k \to \infty} \sup_{x \neq y} \frac{|f_{n_k}(x) - f_{n_k}(y)|}{|x - y|^\alpha} \leq \lim_{k \to \infty} (1 - \|f_{n_k}\|_B) = 1 - \|f\|_B.$$

Therefore $\|f\|_C \leq 1$.

Problem 4: Let $f : [a, b] \times \mathbb{R}^n \to \mathbb{R}$ be a function such that

(i) for each $t \in [a, b]$, the function $x \to f(t, x)$ is continuous,

(ii) for each $x \in \mathbb{R}^n$, the function $t \to f(t, x)$ is Lebesgue measurable.

Show that f is $\mathcal{L} \otimes \mathcal{B}$ measurable, where \mathcal{L} is the class of Lebesgue measurable sets on $[a, b]$, \mathcal{B} is the Borel σ-algebra on \mathbb{R}^n, and $\mathcal{L} \otimes \mathcal{B}$ is the product σ-algebra of \mathcal{L} and \mathcal{B}.

Solution: Let r_1, \ldots, r_n, \ldots be a dense subset of \mathbb{R}^n (for instance a sequence of all points with rational coordinates). For each integer $m \geq 1$ define a function $f_m : [a, b] \times \mathbb{R}^n \to \mathbb{R}$ by

$$f_m(t, x) = f(t, r_k) \quad \text{if} \quad |x - r_k| < \frac{1}{m} \quad \text{but} \quad |x - r_i| \geq \frac{1}{m} \quad \text{for} \quad 1 \leq i < k.$$

Then, by (i), for every $(t, x) \in [a, b] \times \mathbb{R}^n$ $f_m(t, x) \to f(t, x)$ as $m \to \infty$. Since the limit of measurable functions is measurable it is enough to show that the functions f_m are $\mathcal{L} \otimes \mathcal{B}$ measurable. To this end choose an open set $U \subset \mathbb{R}^n$. Then

$$f_m^{-1}(U) = \bigcup_{m=1}^{\infty} \left\{ (t, x) \in [a, b] \times \mathbb{R}^n : f(t, r_k) \in U, |x - r_k| < \frac{1}{m}, |x - r_i| \geq \frac{1}{m} \text{ for } 1 \leq i < k \right\}$$

$$= \bigcup_{m=1}^{\infty} \left(\left\{ t \in [a, b] : f(t, r_k) \in U \right\} \times \left\{ x \in \mathbb{R}^n : |x - r_k| < \frac{1}{m}, |x - r_i| \geq \frac{1}{m} \text{ for } 1 \leq i < k \right\} \right)$$

$$= \bigcup_{m=1}^{\infty} \left(\text{(set in } \mathcal{L} \text{) } \times \text{(set in } \mathcal{B} \text{)} \right) \in \mathcal{L} \otimes \mathcal{B}.$$

Problem 5: Fix a prime number p. A rational number x can be represented by $x = p^{\alpha_k/l}$ with k, l not divisible by p, and $\alpha \in \mathbb{Z}$ is defined uniquely. Define $|\cdot|_p : \mathbb{Q} \to \mathbb{R}$ by

$$|x|_p := p^{-\alpha}, \quad \text{and} \quad |0|_p := 0.$$

(a) Show that $|x + y|_p \leq \max\{|x|_p, |y|_p\}$ and conclude that $d(x, y) := |x - y|_p$ defines a metric on \mathbb{Q}.
(b) Show that in the completion of \mathbb{Q} w.r.t. the above metric a series of rational numbers

$$
\sum_{n \geq 0} a_n
$$

converges if and only if $|a_n|^p \to 0$.

Solution: (a) write $x = p^{\alpha_1}k_1/l_1$ and $y = p^{\alpha_2}k_2/l_2$ (k_1, k_2, l_1, l_2 not divisible by p). We may assume $\alpha_1 \geq \alpha_2$. Then

$$
|x + y|^p = |p^{\alpha_2}(p^{\alpha_1-\alpha_2}k_1 + l_1k_2)/(l_1l_2)|^p = |p^{\alpha_2}|^p = p^{-\alpha_2}
$$

since p does not divide the terms in parenthesis above. Note that $\max\{|x|^p, |y|^p\} \leq |x|^p + |y|^p$. Hence $d(x, z) = |x - y + y - z|^p \leq |x - y|^p + |y - z|^p$, proving the triangle inequality. Obviously d is symmetric and $d(x, y) = 0$ iff $x = y$.

(b) Consider the partial sums $S_N = \sum_{n=1}^{N} a_n$. Suppose S_N converges. Then S_N is a Cauchy sequence, hence for $\epsilon > 0$ there is N_ϵ such that

$$
|a_{N_\epsilon}|^p = |S_N - S_{N_\epsilon-1}|^p \leq \epsilon
$$

for $N \geq N_\epsilon$. So $|a_n|^p \to 0$ w.r.t. the metric d. Suppose now $a_n \to 0$, i.e. $|a_n|^p \to 0$. Then for $M, N \in \mathbb{N}$

$$
|S_{N+M} - S_M|^p \leq \max\{|a_{N+1}|^p, \ldots, |a_{N+M}|^p\} \to 0
$$

Hence S_N is a Cauchy sequence which converges in the completion of \mathbb{Q} w.r.t. the metric d.

Problem 6: Let (X, d) be a compact metric space and denote by $B_R(a) \subset X$ the closed ball of radius $R > 0$ centered at $a \in X$. Suppose μ is a positive Borel measure on X satisfying for some $\beta > 0$ and for all $r \in (0, 1)$ and $a \in X$

$$
c_1 \ r^\beta \leq \mu(B_r(a)) \leq \ r^\beta,
$$

with $c_1 > 0$ independent of r and a. Fix a point $a \in X$. Find all $\alpha \in \mathbb{R}$ for which $x \mapsto d(x, a)^\alpha$ is in $L^1(X, d\mu)$.

Solution: Only the case $\alpha < 0$ is interesting. Since $d(x, a)^\alpha$ is bounded and continuous away from a it suffices to check whether

$$
\int_{B_1(a)} d(x, a)^\alpha \ d\mu(x) < \infty.
$$

Let $\{R_k\}$ be a strictly monotone decreasing sequence of positive reals and denote by B_k the balls $B_{R_k}(a)$. We will choose R_k such that $B_k \setminus B_{k+1}$ has essentially the same measure as B_k. To achieve this we compute

$$
\mu(B_k \setminus B_{k+1}) = \mu(B_k) - \mu(B_{k+1}) \geq c_1 R_k^\beta - R_{k+1}^\beta
$$
Hence, if we choose \(R_{k+1} = R_k \gamma, 0 < \gamma < 1 \), the last term is \(R_k^\beta (c_1 - \gamma^\beta) \) which by appropriate choice of \(\gamma \) equals \(R_k^\beta c_1/2 \). We set \(R_k = \gamma^k, k = 0, 1, \ldots \) and write

\[
\int_{B_{1(a)}} d(x, a)^\alpha \, d\mu(x) = \sum_{k \geq 0} \int_{B_k \setminus B_{k+1}} d(x, a)^\alpha \, d\mu(x)
\]

On each "shell" \(B_k \setminus B_{k+1} \) we may bound the integrand above by \(R_{k+1}^\alpha \) and from below by \(R_k^\alpha \). Since the shells have \(\mu \)-measure at most \(R_k^\beta \) we find that

\[
\int_{B_{1(a)}} d(x, a)^\alpha \, d\mu(x) \leq \sum_k \gamma^{(k+1)\alpha} \gamma^k \beta.
\]

The latter geometric series converges if \(\alpha > -\beta \). Since we also have

\[
\int_{B_k \setminus B_{k+1}} d(x, a)^\alpha \, d\mu(x) \geq \gamma^k \alpha \gamma^k \beta c_1/2.
\]

the condition \(\alpha > -\beta \) is also necessary.

Problem 7: Let \(H \) be a Hilbert space. Show that if \(T : H \to H \) is symmetric, i.e. \(\langle x, Ty \rangle = \langle Tx, y \rangle \) for all \(x, y \in H \), then \(T \) is linear and continuous.

Solution: First we show that \(T \) is linear. Let \(x_1, x_2 \in H \) then for all \(y \in H \) we have \(\langle T(x_1 + x_2), y \rangle = \langle x_1 + x_2, Ty \rangle = \langle x_1, Ty \rangle + \langle x_2, Ty \rangle = \langle Tx_1, y \rangle + \langle Tx_2, y \rangle = \langle Tx_1 + Tx_2, y \rangle \). Hence \(T(x_1 + x_2) = Tx_1 + Tx_2 \). Similarly one shows that \(T \) is homogeneous. To see that \(T \) is continuous we first note that by the closed graph theorem it suffices to show that the graph \(\text{graph}(T) \) is closed. Let \((x_n, Tx_n) \in \text{graph}(T) \) be a sequence in \(H \times H \) converging to \((x, y) \in H \times H \). We claim: \(Tx = y \). To see this consider

\[
\|Tx - y\|^2 = \langle y - Tx, y - Tx \rangle = \lim_n \langle Tx_n - Tx, y - Tx \rangle = \lim_n \langle x_n - x, T(y - Tx) \rangle = 0
\]

Hence \(Tx = y \).