Analysis Comprehensive Exam Questions
Fall 2008

1. (a) Let £ C R be measurable with finite Lebesgue measure |E|. Suppose that {f,}nen
is a bounded sequence in L?(E) and there exists a function f such that f,(z) — f(x) for
a.e. x € E. Show that || f — f.|l1 — 0 as n — oc.

(b) Show that the conclusion of part (a) can fail if |E| = oc.

Solution
(a) Choose € > 0, and let C' = sup,, || f.||2 < co. By Fatou’s Lemma, we have

I£15 = / lim |f,]* < hminf/ |ful? = liminf ||f,]]> < C.
g n— oo B n—oo

Hence f € L*(E).
By Egorov’s Theorem, there exists A C F such that

IE\A| < (%)2

and f, — f uniformly on A. Therefore, we can find an N such that
€
— fn o —_— 11 N.

Then for n > N we have by Cauchy—Schwarz that

I = fulls = /Alf—an/E\Alf—fnl

1/2 1/2
< AL = £) Xalloo + ([E\A\f— mz) (/E\ 1)

< _ 1/2
< Al gy + 1S = fullz BV
19 19
—420— =& O
< 2+ C4C €

(b) Let fn = Xjnnt1]- Then || fy]|2 = 1 for every n, and f,(z) — 0 for every x. However,
f, does not converge to the zero function in L!'-norm, since ||f,||; = 1. O



2. Let X be a Banach space and let T', S be bounded linear operators on X. Prove that:
(a) I —T'S has a bounded inverse if and only if I — ST has a bounded inverse.

(b) o(TS\{0} = o(ST)\{0}.

Remark: o(A) denotes the spectrum of A.

Solution

(a) Suppose that I —T'S has a bounded inverse. In particular, I —T'S is injective. Suppose
that (I — ST)v = 0 for some v € X. Then we have T'(I — ST)v = (I —TS)Tv = 0, so
Tv = 0. But this implies that v = (I — ST)v = 0. Hence also I — ST is injective.

On the other hand since I — T'S is surjective we have that for every z € X there exists
an x € X such that (I — T'S)xr = Tz. Observe that this implies that x € T(X) since
x =T(Sx + 2z) = Ty. We thus have that T'(I — ST)y = Tz, or (I — ST)y = z + v with
v € Ker(T'). But then, setting w = y — v, we have that (I — ST)w = z and [ — ST is
surjective.

Thus I — ST is a bounded bijection of X onto itself, and therefore has a bounded inverse
by the Open Mapping Theorem.

(b) Suppose A ¢ o(T'S) and A # 0. Then T'S — Al has a bounded inverse, so / — L5 has
a bounded inverse. By part (a) it follows that I — S % and thus ST — Al has a bounded
inverse, so A ¢ o(ST). O
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3. Let f, g be absolutely continuous functions on [0, 1]. Show that for x € [0, 1] we have
| 0w = ) - 1090 - [ £
0
Solution

Since f, g are absolutely continuous, we know that they are differentiable almost every-
where and that f’, ¢’ € L'[0, 1]. Consequently, f'(s) ¢'(t) € L*([0,1]?). Letting E = {(s,t) €
0,2)% : s < t}, we compute that

/ / F(s) g/ () dsdt = /0 ) ( /0 ) ds) g(t) dt

=1fw@—ﬂm¢@ﬁ

- [sogwa-s0) [ dod

_ /O F(t) g'(t) dt — £(0) (g(z) — g(0)).
On the other hand,

//f t)dtds = /Oxf’(s) (/:g’(t)dt)ds
)

= g(2)(f(z) — £(0)) — i f'(s) g(s) ds.

Finally, Fubini’s Theorem implies that these two integrals are equal, so the result follows. [



4. Let f : [0,1] — R a bounded function whose set of discontinuities D is closed and
nowhere dense.

(a) Is it true that every such f is Riemann integrable?

(b) Prove that for every such f there exists an homeomorphism A : [0,1] — [0, 1] such
that f o h is Riemann integrable.

Remark: A homeomorphism is a continuous bijection that has a continuous inverse.

Solution
(a) Clearly no. Let {q1,G2,-.-,n,- ..} be an ordering of the rational numbers in (0, 1) and
set

I = UB(gn,e27"),

where B(z,r) = (x —r/2,2 4+ 1/2) N (0,1). Thus |I| < e but [ is open and dense. Thus
J = [0,1]\] is closed and nowhere dense but with large positive measure. Observe that
f = X is continuous for every x € I since [ is open, but it is discontinuous for every x € J
since [ is dense. Hence f is discontinuous on a closed nowhere dense set of positive measure
and thus it is not Riemann integrable.

(b) Let D be the set of discontinuities of f and D= [0,1]\D. We can define

g(x) = %M/OIXDC(t)dt.

Observe that ¢g(0) = 0, g(1) = 1, and g is continuous and strictly increasing. Indeed, if
x < vy, there exists an open interval I C (x,y) such that I C D¢ since D is closed and
nowhere dense. From this we have that
1 Yy
—g(z) = —— [ Xpe()dt > |I| > 0.
o) =9(@) = =g [ Xy = 11

Thus g is an invertible function and its inverse is continuous. Finally since D is closed we
have that D¢ is the union of countably many open interval I;. Observe that

1 1
L) = —— () dt = —— I},
0| = =7 | Xt = =

so [g(D¢)| =1 and |g(D)| = 0. Hence we can choose h = g~!, for then f o h is discontinuous
on the set g(D), which has measure zero, and therefore f o g is Riemann integrable. U
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5. Let X be a Banach space with norm || - || x. Assume that Y is proper subspace of X
that is dense in X with respect to || - [|x, and that there is another norm || - ||y on Y with
respect to which Y is a Banach space. Show that if there exists a constant C' such that

lzllx < Cllzlly forallz e,

then there exists a continuous linear functional on (Y|l - ||y) that has no extension to a
continuous linear functional on (X, || - [|x)-
Solution

The hypotheses imply that Y is continuously embedded into X, i.e., if i: Y — X is given
by i(x) = « for x € Y then ¢ is continuous and ||i|| < C. The adjoint of i is the restriction
map R: X* — Y* given by R(1) = ply. Hence R is bounded, with ||R|| < C. That is,

ey |y« < Cjpl|x+ for each p € X*. This can also be proved without recourse to adjoints
by observing that if x € Y and p € X* then
(@, )| = e, | < lpllxe lellx < Cllpllx [lzlly,

so |||y |ly+ < C||u|lx+ (we are using the linear functional notation (z, u) = u(x)).
Suppose now that every continuous linear functional on (Y, || - ||y) had an extension to
a continuous linear functional on (X, || - ||x). Then R is onto. Further, if 4 € X* and

R(p) = ply = 0, then g = 0 since p is continuous and Y is dense in X. Therefore R
is injective. Thus R: Y* — X* is a bounded bijection, so the Inverse Mapping Theorem
implies that R~! is bounded. Combining this with the above facts, there exist ¢, C' > 0 such
that

Ve X®,  cful

vy < Clpl

x- < |ply] X+

Now fix any € Y. Then by Hahn-Banach, there exists a v € Y* such that ||v|y+ =1
and |[(z,v)| = ||z||y. By hypothesis, there exists an extension of v to a continuous linear
functional on (X, || - [|x). Call this extension u, so we have uly = v. Then

lzlly = Kz, v)| = [(z,1)]
< lzllx el x-
1
< llzllx = ey lly-
c
1
= €T — |V *
lzllx = [[vlly
1
= —lzlx.
c
Since we also have ||z||x < C'||x|ly, we conclude that || - ||x and || - ||y are equivalent norms
on Y. But Y is complete with respect to || - ||y, and therefore it is complete with respect
to || - ||x. Consequently, Y is closed with respect to || - ||x. However, Y is dense in X with

respect to || - || x, which implies that Y = X, a contradiction. O



6. Let G be an unbounded open subset of R. Prove that
H = {z € R: kx € G for infinitely many k € Z}

is dense in R.

Solution
If kx belongs G for infinitely many k then, for every n > 0, x belongs to
U G/k
|k|>n
where
G/k = {yeR:kye G}
Vice versa, if z € U|k‘>n G /k for every n > 0, then kz € G for infinitely many k. Thus

H =N U G/
n=1|k|>n
Clearly Uj>nG/k is an open set. By the Baire Category Theorem, it is therefore enough to
prove that Ug~,G/k is dense, for then H must be dense.
Let D = (z_, z,) be any open interval. If
Dn U G/k =0,
|k|>n
then
U kDnG =0.

|k|>n
Without loss of generality, assume that z_ > 0. Then for k large enough we have that
(k+1)z_ > kz;, and hence | J, ., kD contains a subset of the form (d, 00). By considering
negative k we likewise conclude that (J,.,, kD contains (—oo, —d). Consequently, G' cannot
contain (—oo, —d) U (d, c0), which contradicts the fact that G is unbounded. O
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7. Let py, po be bounded signed Borel measures on R. Show that there exists a unique
bounded signed Borel measure p such that

[ = /(/ f(z+y) dm(m)) dinly),  fE€CR).

Show further that ||u|| < ||l |2l
Note: Scalars in this problem are real.

Solution
If E is any Borel set in R, then

//XE x4 y) dlp|(z) d|pa|(y //d|/~L1 )dlpa|(y) = |l [p2ll < oo

Hence, by Fubini’s Theorem, we can define

k) = //XE(x+y)du1(x)duz(y),

and we have |u(E)| < [[pal| [|p2-

We claim that p defined in this way is a signed Borel measure. The above work shows
that p(F) is a finite real number for every Borel set E, and we clearly have that u(()) = 0.
Hence we need only show that p is countably additive.

Suppose that Fi, Es, ... are disjoint Borel sets, and let £/ = UE;. For each x and y, we
have that

ZIZ"I‘y — XE(ZZ"I"!/) <1¢e€ Ll(ulx;LQ).

||M2

Therefore, by the Dommated Convergence Theorem,

W(E) = / / Xee +y) dus () dpay)

= lim //iXEj(:c +y) dpa(x) dpa(y)

Therefore p is a signed Borel measure.



If we let R= P U N be a Hahn decomposition of R for u, then
lul = [ulR) = — u(N)

://pr+y dp () dps(y //XN:E+?/ dpa () dpa(y)
//xp v+ 1) | () dlps) (s //XN 2 +y) dlpn () duzl ()
= /[ il diealts) = ol el

If ¢ => 7, ap Xg, is any simple function, then

/cbdu = iak /XEk du = iak //XEk(x+y)du1(z)duz(y)

— // d(x +y) dpa () dpa(y).

If we fix f € C.(R), then there exist simple functions ¢, such that |¢x| < |f| and ¢p — f
pointwise. Since f € L'(u) and f(z+1y) € L'(j1 X p2), we therefore have by the Dominated
Convergence Theorem that

/ flz+y)dui(z) dpa(y) = lim / / Or(x +y) dpn () da(y)

IA

k—oo

— ,}ir?o/¢kd“ = /fdu.

It remains only to show that p is unique. If v is another signed Borel measure that satisfies

[ra= [ ( / f(:v+y)du1(:v)) dio(y). | e CulR), 1)

then we have [ fd(u—v) =0 for every f € C.(R). By the Riesz Representation Theorem,
C.(R)* = M,(R), the space of finite signed Borel measures on R. Therefore we must have
w=v.

As the Riesz Representation Theorem for C.(X) is not part of the Comprehensive Exam
syllabus, we give an alternative direct proof. As above, suppose that v is another signed
Borel measure that satisfies equation (1). Fix any open interval (a,b). Let f, € C.(R) be
such that 0 < f, < 1 and f, — X4 pointwise. Then by the Dominated Convergence
Theorem, we have

n—~o0

w(a,b) = lim [ f,dp = lim /fndl/ = v(a,b).

This extends from open intervals to all Borel sets, so we conclude that u = v. U
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8. Given 1 < p < 0o and f, € LP(R), prove that {f,},en is a Cauchy sequence in LP(R)
if and only if the following three conditions hold (|E| denotes Lebesgue measure).

(a) {fn}nen is Cauchy in measure.
(b) For every € > 0 there exists a § > 0 such that if | E| < § then [ |f.|P < ¢ for every n.
(c) For every ¢ > 0 there exists a set £ with |E| < oo such that [c |f,|? < e for every n.

Solution
=. Assume that {f,},en is Cauchy in LP(R). Since LP(R) is complete, there exists a
function fy € LP(R) such that f,, — fo in LP-norm.

(a) By Tchebyshev’s inequality,

1
|{|fm_fn| 25}| S E—prm—ang,

50 { fn}nen is Cauchy in measure.

(b) Given € > 0, we have by standard arguments that for each n > 0 there exists a
o, > 0 such that if [E| < 0, then [, |f,|[? <e. Since f, — fo, there exists an N such that
| fr. — follp < € for all n > N. Set

0 = min{éo, 51, ey (5]\/'},
and suppose that |E| < ¢. Then we have [, |f,[? < e for n < N, and if n > N then

1/p 1/p 1/p

Hence statement (b) holds.

(c) Choose € > 0. Since for each f € LP(R) we have f|x|>m |f|P — 0 as m — oo, for each
n >0 we can find a set E,, with |E,| < oo such that

/ |fa|P < P, allm >0.
ES

Let £ = Ey UE; U---U Ey, where N is such that || f, — fol|, < € for all n > N. Then
|E| < 00, and if n > N then

1/p 1/p 1/p
([nr)" < ([o-nk) ([ 1ar) " < - flhe < 2=

Since Fi,...,Ex C Ey, we also have the required inequality for n < N, so statement (c)
holds.

<. Assume statements (a)—(c) hold and choose € > 0. Let the set F be given as in

statement (c). Set
e \'/?
| | ]
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Let 0 be as given in statement (b). By statement (a), there exists an N such that |A,,,| < §
for all m, n > N. Hence

e N IV I

p p p i P p p
< [ inreisns [ g [ 20 i)

< e e ortle
Hence {f,}nen is Cauchy in LP(R). O



