Qualifying Exam Problems

1. Let \mathcal{M} be the σ algebra of Lebesgue measurable subsets of the real line. Is it true that for every $E \in \mathcal{M}$, there is an F_σ set A (countable intersection of closed sets) so that $E = A \cup B$ where B is a null set? Prove this or give a counterexample.

IDEA OF SOLUTION: This is true; it uses the regularity of Lebesgue measure, and the countable additivity. Approximate E on the inside by a sequence of compact sets....

2. Produce an explicit example of a continuous function of two variables $x \geq 1$ and $t \geq 1$, such that

$$\int_1^\infty \left(\int_1^\infty f(x,t) \, dt \right) \, dx \neq \int_1^\infty \left(\int_1^\infty f(x,t) \, dt \right) \, dx .$$

IDEA OF SOLUTION Violate Fubini’s Theorem by having non–integrability. Use something like $f(x,t) = (x-t)e^{-xt}$.

3. Let (X, \mathcal{S}, μ) be a finite measure space. Suppose that $\{ f_n \}$ is a sequence of real valued measurable functions, and that $f(x) = \lim_{n \to \infty} f_n(x)$ for almost every x. Suppose that $\|f\|_1 > 0$. Show that there for some $\epsilon > 0$, there is a strictly positive number b so that for all n sufficiently large there is a set E_n with $\mu(E_n) > \epsilon$ and $|f_n(x)| > b$ for all $x \in E_n$.

IDEA OF SOLUTION Usual convergence theorems.

4. Give an example of a dense but not closed linear manifold M in a Banach space X.

5. Prove or find a counter example to the statement: if E is a convex subset of a Hilbert space and $\{ x_n \} \subset E$ satisfies $\lim_{n \to \infty} \| x_n \| = \inf \{ \| x \| : x \in E \}$ then $\{ x_n \}$ is a Cauchy sequence.

6. Let (X, \mathcal{S}, μ) be a finite measure space. Let $\{ f_n \}$ be a sequence functions in $L^p(X, \mathcal{S}, \mu)$, $1 < p < \infty$. Suppose that for all $g \in L^q(X, \mathcal{S}, \mu)$ where $q = p/(p-1)$,

$$\lim_{n \to \infty} \int_X f_n g \, d\mu = \int_X f g \, d\mu$$

for some function $f \in L^p(X, \mathcal{S}, \mu)$. Show that if $\lim_{n \to \infty} \| f_n \|_p = \| f \|_p$, then there is a subsequence $\{ f_{n_k} \}$ so that $\lim_{k \to \infty} f_{n_k}(x) = f(x)$ almost everywhere, and give a counterexample showing that this need not be true without the hypothesis that $\lim_{n \to \infty} \| f_n \|_p = \| f \|_p$.

7. Let A be an $n \times n$ matrix. Let $\rho(A)$ be the spectral radius of A, which is, by definition the largest of the absolute values of the eigenvalues of A. Show that $\lim_{n \to \infty} A^n = 0$ if and only if $\rho(A) < 1$. Do not assume that A is diagonalizable.

IDEA OF SOLUTION Schur’s theorem and “almost diagonalizability”.

8. Suppose that $\{ \lambda_p \}_{p=1}^\infty$ is a sequence of complex numbers that lie outside the unit disc and that each of $\{ \phi_p \}_{p=1}^\infty$ and $\{ \theta_p \}_{p=1}^\infty$ is a maximal orthonormal family in a Hilbert space X. Let

$$D(A) = \{ x : x \in X \text{ and } \sum_{p=1}^\infty |\lambda_p|^2 \langle x, \phi_p \rangle^2 < \infty \}$$
Define a linear operator (not necessarily bounded) \(A \) by:

\[
Ax = \sum_{p=1}^{\infty} \lambda_p \langle x, \phi_p \rangle \theta_p
\]

Answer the following questions. If the answer is yes, explain why. If the answer is no, what extra hypothesis must be added to make it yes?

a) Is \(A \) self adjoint?

b) Is there an inverse for \(A \)?

c) Is \(A \) a compact operator?

d) Is \(A \) a continuous operator?

e) Is \(A \) a closed operator?

f) Is \(A \) a normal operator?

g) Is the domain of \(A \) all of \(X \)?