Solutions to Analysis Comprehensive Exam - January 2007

A linear map T on a normed space X is called a strict contraction in case there is constant ¢ < 1
so that ||T'f]| < ¢||f|| for all f € X.
For 1 < p < oo, define T : LP([0,1]) — L*([0,1]) by

i) - | fls)ds .

(a) Show that for 1 < p < 0o, T is a strict contraction on LP([0, 1]).
(b) Show for p =1 and p = oo, T? is a strict contraction on LP([0,1]), but T is not.

(c) Show that for all f € L([0, 1]), the sequence {T™ f},>1 converges in L'([0,1]).
Solution: (a) By Holder’s inequality, for all ¢,

()] = [ 1005 <21,

Hence
1 , 1/p
ITfl, < ( [ e dt) 1l = (/) 151l

Hence we have ¢, = (1/p)'/?.

(b) For p =1, we have that
el < [ 1)lds =1
0

To see that this bound is sharp, consider f,(s) = n on [0,1/n] with f,(s) = 0 for s > 1/n. Then
Tfu(t) = ||f|l1 for all t > 1/n. Thus, ||Tf.|l1 > (1 —1/n)|/f.]l1, and so T is not a strict contraction
on L'

However, using the bound |T'f(t)| < || f]|1, we have that

T f) <t Sl

and so
172 flh < (1/2)]1 11 -

Hence T2 is a strict contraction on L'.
For p = oo, note that

()] < / F($)lds < t] flls - (+)

There is equality if f(¢) = 1 for all ¢, and in this case we have ||T'f|lcoc = ||f|lo0, SO that T"is not a
strict contraction on L*. However, from (),

T2f(t) < (#/2)1fll |

and so

17 flloe < (1/2)] flloo -
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(c) It follows from the above that
T f I < N7 fll < (/281 £l

Hence T, f converges to zero in L'.



Question 2.
For n > 1, let f, : [0,1] — R be integrable. Assume that

klim fr=fae in [0,1],
where f is integrable over [0, 1]. Prove that the following are equivalent:
(a)
1
k—oo [

(b) {fx} are uniformly integrable, that is the following property is true: Ve > 0, there exists 6 > 0

such that
/ fi
E

(You may assume that integrable functions have absolutely continuous integrals. That is, if g is
integrable over [0, 1], then Ve > 0, there exists 6 > 0 such that

X

E c0,1] and |E| <6 = <egforall k> 1. (1)

E C[0,1] and |E| <= <e.)

Solution
(b)=(a)
Let € > 0. Choose § > 0 as in (b). By Egorov’s theorem, there exists a (closed) set F' C [0, 1] such
that
E =10,1]\F

has |F| < 0 and {f;} converges uniformly to f on F. Then as k — oo,

/ 1 = fil < |Flsuplf — fol — 0. 2)
' '

We now bound the integral over the complementary range F = [0, 1] \ F. We use

where

Ef = {z€E: fi(z)>0};
E; = {zek: fi(z) <0}.

Both these sets are measurable, as f; and E are. Then

BE| < |B| <6,
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so our hypothesis gives

+ < 2e.

[Efk

k

/ﬁfk

Combining this, (2), and (3), we obtain

1
hmsup/ =i
0

k—o00

< tmsup (A|f—fk|+é|f—fk|)

< /E|f|+2e.

Finally, as f is integrable, its integral is absolutely continuous, so

/|f|—>0as |E| — 0+.
B

(Alternatively, one can use dominated convergence). We deduce (1).
(a)=(b)
Let ¢ > 0. There exists /N such that

1
k:>N:>/0 |fe — f| <e/2.

Since f and fi, fo,..., fx are integrable, their integrals are absolutely continuous, so there exists
0 > 0 such that

|E|<5;»/|f|<fand/|fk|<f,k:gzv.
B 2 E 2

Then if |E| < d and k > N,

/Efk < /E|fk|
< [in=f+ [ 11
< %—l—%:a

If £ < N, we already have what we need. B



Question 3. Let A be a subset of a metric space X. Suppose that every continuous function on A
is uniformly continuous. Show that A is closed. Is A necessarily compact?.
Solution: For any y in the complement of A, define f on A by

1
d(z,y)
Then f is the composition of continuous functions, and hence is continuous.

Suppose that y is a limit point of A that is in the complement of A. Then for any € > 0, we can
find an 1 in A with d(z1,y) < e. We can then find an z5 in A with d(z2,y) < d(x1,y)/2. Then

fz) =

1 1 1 1
foa) =1 0) = G ™ W) = dlany) =«

However,
d(x1,12) < d(21,y) + d(22,y) < 2€.

Since € > 0 is arbitrary, this is incompatible with the unifom continuity of f. Hence there are no
limit points of A in the complement of A, and so A is closed.

A need not be compact. consider the set of natural numbers with the metric inherited from the
reals.



Question 4.
Let a > 1. Define a sequence {x,} by xo = 1 and

1

,n >0
a+x,

Lptl =

Prove that
lim =z,

n—0o0

exists and evaluate the limit. For example, you may use the following steps:
(a) Show that for n > 1,
Tp — Tp-1

(a+x,)(a+mxphq)

Tn41 — Tn = —

(b) Prove that

Ty — T
|Tps1 — xp| < |na72nﬂ-

(c) Prove that
o0
Z |Tpi1 — Tp| < 0.
n=0

(d) Hence complete the problem.
Solution

(a)

1 1
Tpn+1 — Tpn = -
a+x, a4+ Tp1
Tn—1 — Tn

(a+z,)(a+Tpq)

(b) Note that as a > 0, and as xy = 1 > 0, so all z,, > 0, by induction. Then from (a),

Tp_1 — Tp
|xn+1 - xn| - | : |
(a+x,) (a+xp_1)
< ‘xn—l - xn‘
< e
so the desired inequality follows.
(c) We iterate the inequality of (b):
‘xn - xn—1|
[Tp1 — 20| < 2
1\2
S ? ‘xn—l - xn—2‘
< ..
1 n
< = |x1 — o] -



Then as a > 1, comparison with the convergent geometric series
3 ( ; )n
> oz
n=0 a

gives

o0
g |Tpa1 — xn| < 00.
n=0

(d) We have that

o0

Z ($n+1 - fn)

n=0

converges absolutely and hence converges. Then

m—1
lim (z,, —x) = lim Z (Tpa1 — Tn)
m—00 m—00 nzo

exists. Let us set
c= lim z,,.

m—00

This is non-negative as all the x,, > 0. We have from the defining relation,

c = lim z,

m—00

: 1 1
= lim = ,
m—oo @ + Typ_q a—+c

SO
A +ac—1=0,
SO 1
c= 5 (—aﬂ:\/a2+4).
Here in order that ¢ > 0, we choose the positive sign of \/» 80
1
lim z,, = 3 (—a+\/a2+4> )

Alternate Solution
Use the contraction mapping theorem.



Question 5. Let (2,8, 1) be a sigma finite measure space. For any non negative measurable
function on €, define the distribution function of f, D by

Dp(t) =p{ = flz)>1t}),

so that Dy is defined on [0, o).
Show that for any non negative measurable function f on €,

/ F(2)dp = / / min{ D (s), Dy(t)}dsdt .
Q o Jo
Solution: For ¢t > 0, define A; to be the set

Ar={y: flyy>t}.

We write

fla) = [ L (@)t

Then, by Fubini (here is where the sigma finiteness comes in),

/Q F2(z)d = /Q ( /0 T ()dt /0 N 1AS($)d8> Ay
— /0 N /0 N < /Q 1At(x)1A5(z)du) dtds

Then since either A, C Ay or A, C Ay,

[ L)L ) = min{ Dy (s), D)}



Question 6.
(a) Let p be a (nonnegative) measure on [0, 1] of mass 1, that is p ([0,1]) = 1. Let f:[0,1] = R
be measurable with respect to p, and let ¢ be a function convex on the range of f. Prove Jensen’s

inequality: X X
o[ £an)= [ o0 an

(b) Use (a) to prove that if a; € (0,1], j > 1,

= loga; = a;
>R < (32 W
j=1 j=1
and . .
. 1/27 Q;
i [T <38
j=1 j=1
Solution

(a) As a set of measure 0 does not change the integrals, we assume that f is finite everywhere.
Choose
—0<a<b< oo

such that ¢ is convex in (a,b) and

a< f(x)<bforalxel0,1].

vzfolfdu-

Then as f is integrable with respect to p, 7y is finite and we in fact see from our bounds on f that

Let

a<vy<hb.

(The case b = 0o or a = —oo requires a little more care). Let us consider a line through the point
(v, # (7)) which lies on or below the graph of ¢ throughout (a,b). We can take the slope of this line
to be either D¢ () or D¢ (7). Let us call the slope m. Then

d(y)+m(t—7) <o(t) forallt € (a,b).
Hence, setting t = f (x) for a.e. x € (0,1),

¢ () +m(f(x)=7) <o (f(x).

Integrating with respect to du gives

/0[¢(7)+m(f(X)—7)]du(X)§/o ¢ (f (%)) dp (%)

=$¢(7)/01du+m</olfdu—7/oldu) §/01<Z>(f) dp
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Here by the way we defined =, and as fol dp =1, we have

/Olfd,u—fy/olduzo.
¢m§fwnw

:¢([fw)gé%qwm

(b) We choose  to be a measure having mass 1/27 at the point 1/4, j > 1. Then for any function
f defined on {1/j : j > 1}, we have

| =3,

at least if f > 0, or if the series on the right-hand side is absolutely convergent. Note that

p((0,1) =3 o =1,

So

i
j=1
so u fulfills the conditions of (a). Next, if
“loga; ..
Z — diverges to — oo,
— ¥
j:

then (1) is trivially true. So we assume that

As all loga; <0, this forces
Also, as a; € (0, 1], so

In particular, if we define
f(A/j)=logay, j =1,
then it follows that f is integrable with respect to u, for

! > log a;|
/0 |f|dM:;T<OO
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We apply (a) with the convex function ¢ (x) = exp (x) to deduce that

exp (/Olfdu) S/Olexp(f) dp

Then (1) follows.

Finally, using continuity of exp,

= loga, ) " loga;
exp (Z gj J) = exp (JE&Z gj J)
1

J=1

= lim exp | log a’? | = lim at’?
n—00 J n—00 J
j=1

j=1

11



Question 7. Fix any p with 0 < p < 1. Let (£2,S, 1) be a sigma finite measure space. Define
LP(u) to be the set of a.e. equivalence classes of measurable functions f on 2 such that

[ @i < oo

(a) Show that for all s,t >0, and 0 < p < 1,
(s+ 1) <P+t .

(b) Show that any finite linear combination of functions in LP(u) again belongs to LP(u).

(c) Show that
4,(f. 9) = / (@) — gla)Pdu

defines a metric on LP(u). Show also that with this metric LP(u) is complete.

Solution: (a)

s+t S t
(s+1t)P = / puP~ldt = / puP~tdt +/ p(u + s)P~1dt
0 0 0
S t
< / puP~1dt + / puPidt = sP + P .
0 0

The inequality holds since u — u?~! is monotone decreasing for 0 < p < 1.
(b) This is immediate given the inequality from (a).
(c) For f, g and h in LP(u),
f=hl=(f=9)+(g—MI<I|f—gl+lg—hl.
By the inequality in (a), it is now clear that
|f=hlP <|f=glP +1g—h[",

and hence that
dp(fa h) < dp(fa g) + dp(97 h) .

This proves the triangle inequality, and the remaining requirement for d, to be a metric are plainly
satisfied.
As for the completeness, let {f,} be a Cauchy sequence. Pass to a subsequence {f,, } such that

dp(fnk, fnk+1) S 2_k .

Then by the monotone convergence theorem,

F= Z |fnk - f”k+1‘p
k=1
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is integrable with [, Fdu < 1.
Since 0 < p < 1, it follows that "7 | | fn, — fn,,,| converges almost everywhere. Since absolute

convergence implies convergence,
o

Z(f”k o fnkﬂ)

k=1
converges almost everywhere. Let f denote the sum.

Next,
|f _fnk‘ - Z f”z fnl+1
l=k

almost everywhere, so once again using (a),

oo
‘f_ f”k|p < Z‘fw - fnl+1|p )
l=k

so that
dp(far, [) <277

Thus the subsequence converges to f. But then since the original sequence is Cauchy, the whole
sequence converges to f. This proves the completeness.
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Question 8. Let A denote Lebesgue measure on [0, 1]. Let f be any integrable function on [0, 1].
For p > 0, define f, by
fot) = ptP= (1)
Prove that
tm [ 1£,(6) = FHldA =0

p=1 Jj0,]

Solution: fix any € > 0. Chose a function g that is continuous on [0, 1], and satisifes || f — g|[1 < €.
By a simple calculuation, we also have ||f, — g,|[1 < €.
Now by the triangle inequality (Minkowski’s inequality),

1f = Folls <11 =gl +llg = gollr + llgp = folls < llg = gpllr + 2¢ .

Now since g is continuous on [0, 1], and therefore bounded, we may use the constant bound in the
dominated convergence theorem to conclude that

lim ||g — g,|li =0 .
p—1

Hence for all p sufficiently close to 1, ||f — f,||1 < 3¢, which proves the result.
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