
Solutions to Analysis Comprehensive Exam - January 2007

A linear map T on a normed space X is called a strict contraction in case there is constant c < 1
so that ‖Tf‖ ≤ c‖f‖ for all f ∈ X.

For 1 ≤ p ≤ ∞, define T : Lp([0, 1]) → Lp([0, 1]) by

Tf(t) =

∫ t

0

f(s)ds .

(a) Show that for 1 < p < ∞, T is a strict contraction on Lp([0, 1]).

(b) Show for p = 1 and p = ∞, T 2 is a strict contraction on Lp([0, 1]), but T is not.

(c) Show that for all f ∈ L1([0, 1]), the sequence {T nf}n≥1 converges in L1([0, 1]).
Solution: (a) By Hölder’s inequality, for all t,

|Tf(t)| =

∫

[0,1]

1[0,t](s)f(s)ds ≤ t1/p′‖f‖p .

Hence

‖Tf‖p ≤
(
∫ 1

0

tp/p′dt

)1/p

‖f‖p = (1/p)1/p‖f‖p .

Hence we have cp = (1/p)1/p.

(b) For p = 1, we have that

|Tf(t)| ≤
∫ 1

0

|f(s)|ds = ‖f‖1 .

To see that this bound is sharp, consider fn(s) = n on [0, 1/n] with fn(s) = 0 for s > 1/n. Then
Tfn(t) = ‖f‖1 for all t ≥ 1/n. Thus, ‖Tfn‖1 ≥ (1− 1/n)‖fn‖1, and so T is not a strict contraction
on L1.

However, using the bound |Tf(t)| ≤ ‖f‖1, we have that

T 2f(t) ≤ t‖f‖1 ,

and so
‖T 2f‖1 ≤ (1/2)‖f‖1 .

Hence T 2 is a strict contraction on L1.
For p = ∞, note that

|Tf(t)| ≤
∫ t

0

|f(s)|ds ≤ t‖f‖∞ . (∗)

There is equality if f(t) = 1 for all t, and in this case we have ‖Tf‖∞ = ‖f‖∞, so that T is not a
strict contraction on L∞. However, from (∗),

T 2f(t) ≤ (t2/2)‖f‖∞ ,

and so
‖T 2f‖∞ ≤ (1/2)‖f‖∞ .
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(c) It follows from the above that

‖T 2k+1f‖1 ≤ ‖T 2kf‖1 ≤ (1/2)k‖f‖1 .

Hence Tnf converges to zero in L1.
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Question 2.
For n ≥ 1, let fn : [0, 1] → R be integrable. Assume that

lim
k→∞

fk = f a.e. in [0, 1] ,

where f is integrable over [0, 1]. Prove that the following are equivalent:
(a)

lim
k→∞

∫ 1

0

|fk − f | = 0.

(b) {fk} are uniformly integrable, that is the following property is true: ∀ε > 0, there exists δ > 0
such that

E ⊂ [0, 1] and |E| < δ ⇒
∣

∣

∣

∣

∫

E

fk

∣

∣

∣

∣

< ε for all k ≥ 1. (1)

(You may assume that integrable functions have absolutely continuous integrals. That is, if g is
integrable over [0, 1], then ∀ε > 0, there exists δ > 0 such that

E ⊂ [0, 1] and |E| < δ ⇒
∣

∣

∣

∣

∫

E

g

∣

∣

∣

∣

< ε.)

Solution
(b)⇒(a)
Let ε > 0. Choose δ > 0 as in (b). By Egorov’s theorem, there exists a (closed) set F ⊂ [0, 1] such
that

E = [0, 1] \F
has |E| < δ and {fk} converges uniformly to f on F . Then as k → ∞,

∫

F

|f − fk| ≤ |F | sup
F

|f − fk| → 0. (2)

We now bound the integral over the complementary range E = [0, 1] \F. We use
∫

E

|f − fk|

≤
∫

E

|f | +
∫

E

|fk|

=

∫

E

|f | +
∫

E+

k

fk +

∫

E−

k

(−fk) , (3)

where

E+
k = {x ∈ E : fk (x) ≥ 0} ;

E−
k = {x ∈ E : fk (x) < 0} .

Both these sets are measurable, as fk and E are. Then
∣

∣E±
k

∣

∣ ≤ |E| < δ,
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so our hypothesis gives
∣

∣

∣

∣

∣

∫

E+

k

fk

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

E−

k

fk

∣

∣

∣

∣

∣

< 2ε.

Combining this, (2), and (3), we obtain

lim sup
k→∞

∫ 1

0

|f − fk|

≤ lim sup
k→∞

(
∫

F

|f − fk| +
∫

E

|f − fk|
)

≤
∫

E

|f | + 2ε.

Finally, as f is integrable, its integral is absolutely continuous, so

∫

E

|f | → 0 as |E| → 0 + .

(Alternatively, one can use dominated convergence). We deduce (1).
(a)⇒(b)
Let ε > 0. There exists N such that

k > N ⇒
∫ 1

0

|fk − f | < ε/2.

Since f and f1, f2, ..., fN are integrable, their integrals are absolutely continuous, so there exists
δ > 0 such that

|E| < δ ⇒
∫

E

|f | <
ε

2
and

∫

E

|fk| <
ε

2
, k ≤ N.

Then if |E| < δ and k > N,

∣

∣

∣

∣

∫

E

fk

∣

∣

∣

∣

≤
∫

E

|fk|

≤
∫

E

|fk − f | +
∫

E

|f |

<
ε

2
+

ε

2
= ε.

If k ≤ N , we already have what we need. �
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Question 3. Let A be a subset of a metric space X. Suppose that every continuous function on A
is uniformly continuous. Show that A is closed. Is A necessarily compact?.
Solution: For any y in the complement of A, define f on A by

f(x) =
1

d(x, y)
.

Then f is the composition of continuous functions, and hence is continuous.
Suppose that y is a limit point of A that is in the complement of A. Then for any ε > 0, we can

find an x1 in A with d(x1, y) < ε. We can then find an x2 in A with d(x2, y) < d(x1, y)/2. Then

f(x2) − f(x1) =
1

d(x2, y)
− 1

d(x1, y)
≥ 1

d(x1, y)
≥ 1

ε
.

However,
d(x1, x2) ≤ d(x1, y) + d(x2, y) ≤ 2ε .

Since ε > 0 is arbitrary, this is incompatible with the unifom continuity of f . Hence there are no
limit points of A in the complement of A, and so A is closed.

A need not be compact. consider the set of natural numbers with the metric inherited from the
reals.
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Question 4.
Let a > 1. Define a sequence {xn} by x0 = 1 and

xn+1 =
1

a + xn
, n ≥ 0.

Prove that
lim

n→∞
xn

exists and evaluate the limit. For example, you may use the following steps:
(a) Show that for n ≥ 1,

xn+1 − xn = − xn − xn−1

(a + xn) (a + xn−1)
.

(b) Prove that

|xn+1 − xn| ≤
|xn − xn−1|

a2
.

(c) Prove that
∞
∑

n=0

|xn+1 − xn| < ∞.

(d) Hence complete the problem.
Solution
(a)

xn+1 − xn =
1

a + xn
− 1

a + xn−1

=
xn−1 − xn

(a + xn) (a + xn−1)
.

(b) Note that as a > 0, and as x0 = 1 > 0, so all xn > 0, by induction. Then from (a),

|xn+1 − xn| =
|xn−1 − xn|

(a + xn) (a + xn−1)

≤ |xn−1 − xn|
a2

,

so the desired inequality follows.
(c) We iterate the inequality of (b):

|xn+1 − xn| ≤ |xn − xn−1|
a2

≤
(

1

a2

)2

|xn−1 − xn−2|

≤ ...

≤
(

1

a2

)n

|x1 − x0| .
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Then as a > 1, comparison with the convergent geometric series

∞
∑

n=0

(

1

a2

)n

gives
∞
∑

n=0

|xn+1 − xn| < ∞.

(d) We have that
∞
∑

n=0

(xn+1 − xn)

converges absolutely and hence converges. Then

lim
m→∞

(xm − x0) = lim
m→∞

m−1
∑

n=0

(xn+1 − xn)

exists. Let us set
c = lim

m→∞
xm.

This is non-negative as all the xn > 0. We have from the defining relation,

c = lim
m→∞

xm

= lim
m→∞

1

a + xm−1
=

1

a + c
,

so
c2 + ac − 1 = 0,

so

c =
1

2

(

−a ±
√

a2 + 4
)

.

Here in order that c ≥ 0, we choose the positive sign of
√

, so

lim
m→∞

xm =
1

2

(

−a +
√

a2 + 4
)

.

Alternate Solution
Use the contraction mapping theorem.
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Question 5. Let (Ω,S, µ) be a sigma finite measure space. For any non negative measurable
function on Ω, define the distribution function of f , Df by

Df (t) = µ({ x : f(x) > t }) ,

so that Df is defined on [0,∞].
Show that for any non negative measurable function f on Ω,

∫

Ω

f 2(x)dµ =

∫ ∞

0

∫ ∞

0

min{ Df (s), Df(t)}dsdt .

Solution: For t ≥ 0, define At to be the set

At = { y : f(y) > t } .

We write

f(x) =

∫ ∞

0

1At
(x)dt .

Then, by Fubini (here is where the sigma finiteness comes in),

∫

Ω

f 2(x)dx =

∫

Ω

(
∫ ∞

0

1At
(x)dt

∫ ∞

0

1As
(x)ds

)

dµ

=

∫ ∞

0

∫ ∞

0

(
∫

Ω

1At
(x)1As

(x)dµ

)

dtds

Then since either At ⊂ As or As ⊂ At,

∫

Ω

1At
(x)1As

(x)dµ = min{ Df(s), Df(t)} .
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Question 6.
(a) Let µ be a (nonnegative) measure on [0, 1] of mass 1, that is µ ([0, 1]) = 1. Let f : [0, 1] → R

be measurable with respect to µ, and let φ be a function convex on the range of f . Prove Jensen’s
inequality:

φ

(
∫ 1

0

f dµ

)

≤
∫ 1

0

φ (f) dµ.

(b) Use (a) to prove that if aj ∈ (0, 1], j ≥ 1,

∞
∑

j=1

log aj

2j
≤ log

(

∞
∑

j=1

aj

2j

)

(1)

and

lim
n→∞

n
∏

j=1

a
1/2j

j ≤
∞
∑

j=1

aj

2j
.

Solution
(a) As a set of measure 0 does not change the integrals, we assume that f is finite everywhere.
Choose

−∞ ≤ a < b ≤ ∞
such that φ is convex in (a, b) and

a < f (x) < b for all x ∈ [0, 1] .

Let

γ =

∫ 1

0

f dµ.

Then as f is integrable with respect to µ, γ is finite and we in fact see from our bounds on f that

a < γ < b.

(The case b = ∞ or a = −∞ requires a little more care). Let us consider a line through the point
(γ, φ (γ)) which lies on or below the graph of φ throughout (a, b). We can take the slope of this line
to be either D+φ (γ) or D−φ (γ). Let us call the slope m. Then

φ (γ) + m (t − γ) ≤ φ (t) for all t ∈ (a, b) .

Hence, setting t = f (x) for a.e. x ∈ (0, 1) ,

φ (γ) + m (f (x) − γ) ≤ φ (f (x)) .

Integrating with respect to dµ gives

∫ 1

0

[φ (γ) + m (f (x) − γ)] dµ (x) ≤
∫ 1

0

φ (f (x)) dµ (x)

⇒ φ (γ)

∫ 1

0

dµ + m

(
∫ 1

0

f dµ − γ

∫ 1

0

dµ

)

≤
∫ 1

0

φ (f) dµ
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Here by the way we defined γ, and as
∫ 1

0
dµ = 1, we have

∫ 1

0

f dµ − γ

∫ 1

0

dµ = 0.

So

φ (γ) ≤
∫ 1

0

φ (f) dµ

⇒ φ

(
∫ 1

0

f dµ

)

≤
∫ 1

0

φ (f) dµ.

(b) We choose µ to be a measure having mass 1/2j at the point 1/j, j ≥ 1. Then for any function
f defined on {1/j : j ≥ 1}, we have

∫ 1

0

f dµ =

∞
∑

j=1

f (1/j) /2j,

at least if f ≥ 0, or if the series on the right-hand side is absolutely convergent. Note that

µ ([0, 1]) =

∞
∑

j=1

1

2j
= 1,

so µ fulfills the conditions of (a). Next, if

∞
∑

j=1

log aj

2j
diverges to −∞,

then (1) is trivially true. So we assume that

∞
∑

j=1

log aj

2j
> −∞.

As all log aj ≤ 0, this forces
∞
∑

j=1

|log aj|
2j

< ∞.

Also, as aj ∈ (0, 1], so
∞
∑

j=1

aj

2j
≤

∞
∑

j=1

1

2j
< ∞,

In particular, if we define
f (1/j) = log aj, j ≥ 1,

then it follows that f is integrable with respect to µ, for

∫ 1

0

|f | dµ =

∞
∑

j=1

|log aj|
2j

< ∞.
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We apply (a) with the convex function φ (x) = exp (x) to deduce that

exp

(
∫ 1

0

f dµ

)

≤
∫ 1

0

exp (f) dµ

⇒ exp

(

∞
∑

j=1

log aj

2j

)

≤
∞
∑

j=1

aj

2j
.

Then (1) follows.

Finally, using continuity of exp,

exp

(

∞
∑

j=1

log aj

2j

)

= exp

(

lim
n→∞

n
∑

j=1

log aj

2j

)

= lim
n→∞

exp

(

n
∑

j=1

log aj

2j

)

= lim
n→∞

exp

(

log

n
∏

j=1

a
1/2j

j

)

= lim
n→∞

n
∏

j=1

a
1/2j

j .
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Question 7. Fix any p with 0 < p < 1. Let (Ω,S, µ) be a sigma finite measure space. Define
Lp(µ) to be the set of a.e. equivalence classes of measurable functions f on Ω such that

∫

Ω

|f(x)|pdµ < ∞ .

(a) Show that for all s, t ≥ 0, and 0 < p < 1,

(s + t)p ≤ sp + tp .

(b) Show that any finite linear combination of functions in Lp(µ) again belongs to Lp(µ).

(c) Show that

dp(f, g) =

∫

Ω

|f(x) − g(x)|pdµ

defines a metric on Lp(µ). Show also that with this metric Lp(µ) is complete.

Solution: (a)

(s + t)p =

∫ s+t

0

pup−1dt =

∫ s

0

pup−1dt +

∫ t

0

p(u + s)p−1dt

≤
∫ s

0

pup−1dt +

∫ t

0

pup−1dt = sp + tp .

The inequality holds since u 7→ up−1 is monotone decreasing for 0 < p < 1.

(b) This is immediate given the inequality from (a).

(c) For f , g and h in Lp(µ),

|f − h| = |(f − g) + (g − h)| ≤ |f − g| + |g − h| .

By the inequality in (a), it is now clear that

|f − h|p ≤ |f − g|p + |g − h|p ,

and hence that
dp(f, h) ≤ dp(f, g) + dp(g, h) .

This proves the triangle inequality, and the remaining requirement for dp to be a metric are plainly
satisfied.

As for the completeness, let {fn} be a Cauchy sequence. Pass to a subsequence {fnk
} such that

dp(fnk
, fnk+1

) ≤ 2−k .

Then by the monotone convergence theorem,

F =

∞
∑

k=1

|fnk
− fnk+1

|p
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is integrable with
∫

Ω
Fdµ ≤ 1.

Since 0 < p < 1, it follows that
∑∞

k=1 |fnk
− fnk+1

| converges almost everywhere. Since absolute
convergence implies convergence,

∞
∑

k=1

(fnk
− fnk+1

)

converges almost everywhere. Let f denote the sum.
Next,

|f − fnk
| =

∣

∣

∣

∣

∣

∞
∑

`=k

(fn`
− fn`+1

)

∣

∣

∣

∣

∣

almost everywhere, so once again using (a),

|f − fnk
|p ≤

∞
∑

`=k

|fn`
− fn`+1

|p ,

so that
dp(fnk

, f) ≤ 2−k .

Thus the subsequence converges to f . But then since the original sequence is Cauchy, the whole
sequence converges to f . This proves the completeness.
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Question 8. Let λ denote Lebesgue measure on [0, 1]. Let f be any integrable function on [0, 1].
For p > 0, define fp by

fp(t) = ptp−1f(tp) .

Prove that

lim
p→1

∫

[0,1]

|fp(t) − f(t)|dλ = 0 .

Solution: fix any ε > 0. Chose a function g that is continuous on [0, 1], and satisifes ‖f − g‖1 < ε.
By a simple calculuation, we also have ‖fp − gp‖1 < ε.

Now by the triangle inequality (Minkowski’s inequality),

‖f − fp‖1 ≤ ‖f − g‖1 + ‖g − gp‖1 + ‖gp − fp‖1 ≤ ‖g − gp‖1 + 2ε .

Now since g is continuous on [0, 1], and therefore bounded, we may use the constant bound in the
dominated convergence theorem to conclude that

lim
p→1

‖g − gp‖1 = 0 .

Hence for all p sufficiently close to 1, ‖f − fp‖1 ≤ 3ε, which proves the result.
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