Algebra Comprehensive Exam Spring 2011

PROBLEMS AND SOLUTIONS

Determine all finitely generated abelian groups G whose automorphism
group is finite.

Solution: Let G be a finitely generated abelian group. By the classifica-
tion of finitely generated abelian groups, we know that G is isomorphic to
a direct product of finitely many cyclic groups. In particular, G = Z" x H
where H is a finite group and r > 0. The subgroup H is precisely the
torsion subgroup of Z" x H. Any element of Aut(G) must preserve the
torsion subgroup. It follows that Aut(G) = Aut(Z") x Aut(H). Since H is
finite, it follows that Aut(H) is finite. Thus, it suffices to determine when
Aut(Z") is finite. We have Aut(Z°) = Aut(1) = 1 and Aut(Z) = Z/2Z,
and so for r = 0,1, we have that Aut(G) is finite. For r > 2, we have

GL(2,Z) = Aut(Z?) < Aut(Z") < Aut(Z") x Aut(H) = Aut(G).

Since GL(2,Z) is an infinite group, we see that Aut(G) is infinite. Thus
Aut(G) = Aut(Z" x H) is finite if and only if r < 1.

Prove that if G is a finite group containing no subgroup of index 2, then
any subgroup of index 3 is normal in G.

Solution: Let H < G be a subgroup of index 3. The group G acts
on the set of left cosets of H by left multiplication. This action gives a
homomorphism ¢ : G — S3. Let K = ker(¢). If g € K, then in particular
gH = H, and so we see that K < H. Let k = [H : K]. Since K is normal
in G it suffices to show H = K, that is, k = 1.

We know that [G : K| = [G : H|[H : K| = 3k. By the first isomorphism
theorem we also have

3k =[G : K] = |G/|K] = [o(G)].

Since ¢(G) is a subgroup of Ss, it follows from Lagrange’s theorem that
|op(G)| divides |S3] = 6 and so 3k divides 6. Thus k is equal to either 1
or 2.



Suppose that k& = 2. This means that [G : K| = |¢(G)| = 6, which is to
say that ¢ is surjective. It follows that [G : ¢~'(A3)] = [S5 : A3] = 2,
contradicting the assumption that G does not contain any subgroup of
index 2. Thus, it must be that k£ = 1, which is what we wanted to show.

Prove the following special case of Gauss’ lemma: If p(z) € Z[z] is re-
ducible in Q[z], then p(z) is reducible in Z[x].

Solution: This is a special case of Gauss’ lemma, which can be found in
any textbook on abstract algebra.

Let R be a local ring, i.e., a commutative ring with identity having a
unique maximal ideal m. Let A be a 2 x 2 matrix with coefficients in
m. Show that the matrix B = A + [ is invertible over R, i.e., that there
exists a 2 x 2 matrix B’ with coefficients in R such that BB’ = B'B = I.

Solution: First note that an element x € R is invertible iff x ¢ m.
Indeed, if x € m then clearly x is not invertible; conversely, if z &€ m
then x is not contained in any maximal ideal of R so (z) = R. The
determinant of B is

det(B) = bi1baa — biaboy = (a11 + 1)(aze + 1) — ara9

with a;; € m. Thus det(B) = 1+a with a € m which implies that det(B)
is invertible in R. We can take B’ to be the matrix

B/ — det(B)_l ( 622 _612 ) )
_b21 bll

Suppose L/K is an algebraic field extension, and that R is a subring of
L containing K. Prove that R is a field.

Solution: Let r € R be any nonzero element. Since L/K is algebraic
and r € L is nonzero, r satisfies a polynomial equation

At 4 " @+ ag =0

with a,, # 0 and a; € K for all i. We may assume that n is minimal, and
thus that ag # 0. We can rewrite the above equation as

r (—aal(anrn_l +a, i+ al)) =1

in which all terms belong to R, since K is a field contained in R. It
follows that r is invertible in R as desired.



6. Prove that every element of finite order in the group SL(2,Z) of 2 x 2
integer matrices with determinant 1 has order dividing 12. [Hint: First
show that the eigenvalues of any torsion element must be roots of unity.]

Solution: Let A be an element of exact order m in SL(2,Z), so that
the minimal polynomial of A over Q is X™ — 1. Since the minimal and
characteristic polynomial of A have the same irreducible factors, it follows
that the eigenvalues of A are m'™® roots of unity. (Alternately, one can use
the fact that the eigenvalues of A™ are the m' powers of the eigenvalues
of A.) Also, since the minimal polynomial of A is square-free (since there
are m distinct m'™® roots of unity in C), it follows that A is diagonalizable.
Thus the eigenvalues of A are primitive m'™ roots of unity.

On the other hand, the eigenvalues of A satisfy the characteristic poly-
nomial of A, which is a monic polynomial of degree 2 with integer coef-
ficients. In particular, the eigenvalues of A are defined over a quadratic
extension of Q. By the irreducibility of the m'" cyclotomic polynomial,
we have [Q((n) : Q] = ¢(m) (Euler’s p-function) if ¢, is a primitive m'™®
root of unity. By the explicit formula for ¢, it is easy to see that p(n) < 2
iff n |4 orn|6. In particular, we must have m | 12.

7. Let V be a finite dimensional vector space over a field F', and let T :
V' — V be a linear endomorphism. Prove that there is a direct sum
decomposition V = V; @ V5, with the following properties:

(1) T(V;) CV; fori=1,2.
(2) T is an isomorphism on V;.

(3) T is nilpotent on V5.

[Hint: Consider the subspaces Im(7) 2 Im(7?) 2 --- and Ker(T) C
Ker(T?) C ---]
Solution: The chain Im(7) 2 Im(7?%) D --- must stabilize to a T-

invariant subspace V; and the chain Ker(T) C Ker(7?) C --- must sta-
bilize to a T-invariant subspace V5.

We claim that 7" is an isomorphism on V; and 7' is nilpotent on V5. Indeed,
it is easy to see that T'(V}) = V;, which implies that T is an isomorphism
on V; by the rank-nullity theorem. Moreover, Vo = Ker(7™) for some
positive integer m and thus 7™ |y, = 0, so T is nilpotent on V5.



Finally, we claim that V = V; @ V5. It is clear from what we have already
shown that V3 NV, = (0). So it suffices to show that every v € V' can
be written as vy + vy with v; € V;. Without loss of generality (replacing
m by a larger integer if necessary), we may assume that V; = T™(V)
and V, = Ker(T™) for the same m. Since Im(7T*™) = Im(7™), we have
T™(v) = T?"(w) for some w € V. Then T™(v — T™(w)) = T™(v) —
T (w) = 0, 80 vy := v — T™(w) € V,. Setting v := T™(w) € V; gives
the desired decomposition of v.



