1. (a) Prove that the polynomial \(f(X) = X^6 + X^3 + 1 = (X^9 - 1)/(X^3 - 1) \) is irreducible over \(\mathbb{Q} \).
 (b) Find the factorization of \(f(X) \) over \(\mathbb{F}_{19} \).

2. Which of the following rings are isomorphic? Give justifications.
 (a) \(R_1 = \mathbb{Z}[i]/(5) \)
 (b) \(R_2 = \mathbb{F}_5[X]/(X^2 - 1) \)
 (c) \(R_3 = \mathbb{F}_5[X]/(X^2 + 1) \)

 Here \(\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\} \) is the ring of Gauss integers.

3. Let \(K \) be the splitting field over \(\mathbb{Q} \) for an irreducible polynomial of degree 3. What are the possibilities for \([K : \mathbb{Q}]\)? Give an example to show that each possibility does occur.

4. Let \(p, q \) be prime numbers with \(p < q \). Prove that there exists a non-cyclic group of order \(pq \) if and only if \(p \mid q - 1 \).

5. Let \(G \) be a finite group, and let \(H \) be a subgroup of \(G \) of index \(p \), with \(p \) prime. If \(n_H \) denotes the number of subgroups of \(G \) conjugate to \(H \), prove that \(n_H = 1 \) if \(H \) is normal in \(G \), and that \(n_H = p \) otherwise.

6. Let \(I \) be a nonzero ideal in \(\mathbb{Z}[X] \), and suppose that the lowest degree of a nonzero polynomial in \(I \) is \(n \) and that \(I \) contains some monic polynomial of degree \(n \). Prove that \(I \) is a principal ideal.

7. (a) If \(n \) is prime and \(F(X) \) is an irreducible polynomial over \(\mathbb{Q} \) of degree \(n \), prove that the Galois group of \(F \) over \(\mathbb{Q} \) contains an \(n \)-cycle.
(b) If \(n \) is not prime, show that the Galois group in part (a) need not contain an \(n \)-cycle.
[**Hint:** Consider the cyclotomic polynomial \(\Phi_8(X) \).]

8. Let \(P \) be the vector space of all real polynomials and let \(L : P \rightarrow P \) be the linear transformation defined by \(L(f) = f + f' \), where \(f' \) is the derivative of \(f \). Prove that \(L \) is invertible.