Analysis Comprehensive Exam
August 26, 2016

Student Number: [___]

Instructions: Complete 5 of the 8 problems, and circle their numbers below – the uncircled problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

Notations used throughout the exam:

For $E \subseteq \mathbb{R}^d$, the exterior Lebesgue measure of E is written $|E|_e$.

If E is measurable then its Lebesgue measure is denoted $|E|$.

We denote the dual space of a Banach space V by V^*, i.e. V^* is the collection of all bounded linear functionals acting on V.
1. Let $E \subset \mathbb{R}$ be a Lebesgue measurable set with $0 < |E| < \infty$.

 (i) For each $x \in \mathbb{R}$ and $r > 0$ define $I_r(x) = [x - r/2, x + r/2]$ and $h_r(x) = |E \cap I_r(x)|$. Prove that for a fixed $r > 0$, the function $h_r(x)$ is continuous at every $x \in \mathbb{R}$.

 (ii) Prove that there exists $r_0 > 0$ such that for each $0 < r < r_0$ there exists a closed interval $I \subset \mathbb{R}$ which satisfies $|I| = r$ and $|E \cap I| = r/2$.

2. Show that for $A \subset \mathbb{R}^d$, A is Lebesgue measurable if and only if for every $\epsilon > 0$ there exists a Lebesgue measurable set $E \subset \mathbb{R}^d$ such that

 $$|A \triangle E|_\epsilon < \epsilon.$$

3. Let E_1, \ldots, E_n be Lebesgue measurable subsets of $[0, 1]$ and define

 $$S_q = \{x \in [0, 1] : x \text{ belongs to at least } q \text{ of the sets } E_i\}.$$

 Show that for each $1 \leq q \leq n$, S_q is Lebesgue measurable and there exists k such that

 $$\frac{q |S_q|}{n} \leq |E_k|.$$

4. Prove that if $f(x), xf(x) \in L^1(\mathbb{R})$ then the function

 $$F(w) = \int_{\mathbb{R}} f(x) \sin(wx) \, dx$$

 is defined, continuous, and differentiable at every point $w \in \mathbb{R}$. (You may wish to use the identity $\sin(\alpha) - \sin(\beta) = 2 \sin(\frac{\alpha - \beta}{2}) \cos(\frac{\alpha + \beta}{2})$).

5. Let $f \in L^p(\mathbb{R})$, $1 \leq p < \infty$. Given $y > 0$ denote $A_y := \{x \in \mathbb{R} : |f(x)| > y\}$. Prove that

 $$\int_{\mathbb{R}} |f(x)|^p \, dx = p \int_0^\infty y^{p-1} |A_y| \, dy.$$

6. Let μ and ν be two σ-finite positive measures on a measurable space (X, \mathcal{M}). Show that there exists a measurable function $f : X \to \mathbb{R}$ such that for each $E \in \mathcal{M}$,

 $$\int_E (1 - f) \, d\mu = \int_E f \, d\nu.$$

 Does the above statement hold for every finite signed measures μ and ν?
7. Let \mathcal{H} be a Hilbert space and $\{f_n\}_{n \in \mathbb{N}}$ be a sequence in \mathcal{H}. Prove that the following two statements are equivalent

(i) There exists $C > 0$ such that for every $f \in \mathcal{H}$,
$$\sum_{n=1}^{\infty} |\langle f, f_n \rangle|^2 \leq C \|f\|^2.$$

(ii) There exists $C > 0$ such that for every sequence $\{a_n\}_{n \in \mathbb{N}}$ with finitely many nonzero terms
$$\left\| \sum_{n=1}^{\infty} a_n f_n \right\|^2 \leq C \sum_{n=1}^{\infty} |a_n|^2.$$

8. Let V be a Banach space and let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence in V. For $m \in \mathbb{N}$ let
$$W_m = \text{span}\{f_n\}_{n \neq m}.$$
Prove that the following two statements are equivalent.

(i) There exists $d > 0$ such that for every $m \in \mathbb{N}$,
$$d \leq \text{dist}(f_m, W_m).$$

(ii) There exist $M > 0$ and a sequence $\{g_n\}_{n \in \mathbb{N}}$ in V^* such that for every $n \in \mathbb{N}$ we have $\|g_n\|_{V^*} < M$ and for each $m \in \mathbb{N}$,
$$g_n(f_m) = \delta_{nm}.$$