Algebra Comprehensive Exam
Spring 2018

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Let H be the subgroup of Sg generated by (16425) and (16)(25)(34). Let H act on Sg
by conjugation. Show that the set

= {(12)(35)(46), (13)(24)(56), (14)(25)(36), (15)(26)(34), (16)(23)(45) }

is invariant under H, thereby defining a homomorphism ¢ : H — S5. Show that ¢ is an
isomorphism.

2. Show that every finite group is isomorphic to a subgroup of a simple group.

3. Let R be a commutative ring with 1. Suppose an ideal I in R is such that zy € I implies
that either x € I or y" € I. Let

VI={reR:r" for some n € Z.0}

Show that /T is the smallest prime ideal containing I. (Here “smallest” means that any
other prime ideal containing I, contains v/I. Hint: remember to prove that v/7 is an
ideal, which is prime.)

4. Suppose that R is a commutative ring with 1 such that for every x € R, there is some
natural number n > 1 such that 2™ = z. Show that every prime ideal of R is maximal.

5. Compute the Galois group of 2% — 22 — 6 over Q.

6. Suppose V is a finite dimensional vector space over a field k and suppose that A: V — V
is a k-linear endomorphism whose minimal polynomial is not equal to its characteristic
polynomial. Show that there exist k-linear endomorphisms B,C' : V' — V such that
AB = BA, AC =CA, but BC #CB

7. Suppose that K is an extension of Q of degree n. Let o1,...,0, : K — C be the
distinct embeddings of K into C. Let a € K. Regarding K as a vector space over Q,
let ¢ : K — K be the linear transformation ¢(x) = ax. Show that the eigenvalues of ¢
are o1(a),...,on().

8. An R-module M is called irreducible if M # 0 and the only submodules of M are 0 and
M. Now suppose that R is a commutative ring with 1 and that M is a left R-module.

Show that M is irreducible if and only if M is isomorphic to R/I for a maximal ideal I
of R.
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