Analysis Comprehensive Exam
January 22, 2016

Student Number: [__]

Instructions: Complete up to 5 of the 8 problems, and circle their numbers below – the uncircled problems will not be graded.

1 2 3 4 5 6 7 8

Write only on the front side of the solution pages. A complete solution of a problem is preferable to partial progress on several problems.

NOTES:

- All functions in this exam are (extended) real-valued.

- The exterior Lebesgue measure of $E \subseteq \mathbb{R}^d$ is denoted by $|E|_e$, and if E is measurable then its Lebesgue measure is $|E|$.

- The characteristic function of a set A is denoted by χ_A.

- A consequence of the Stone–Weierstrass theorem is the Weierstrass Approximation Theorem, which states that the set of polynomials on $[0, 1]^d$ is dense in $C([0, 1]^d)$ if the latter set is endowed with the uniform norm. You can use this fact without proof.

- You can also use without proof the fact the every monotone function $f : [a, b] \to \mathbb{R}$ is Borel measurable and is differentiable almost everywhere.
1. Prove that \(E \subseteq \mathbb{R}^d \) is measurable if and only if \(|Q| = |Q \cap E| + |Q \setminus E|\), for every box \(Q \).

2. Let \(\mu \) be a positive, Borel regular measure on \(I = [0,1] \) such that \(\mu(I) = 1 \). Set \(\xi_n(x) = x^n \) for \(n = 0, 1, 2, \ldots \) and \(x \in I \). Let

\[
H = L^2(I, \mu), \quad V = L^\infty(I, \mu).
\]

Let \(\langle \cdot, \cdot \rangle_H \) denote the inner product on \(H \) and \(|| \cdot ||_H \) the norm on \(H \). Let \(|| \cdot ||_V \) denote the norm on \(V \).

(i) Show that \(||\xi_n||_H \rightarrow 0 \) if and only if \(\mu\{1\} = 0 \).

(ii) Show that if \(f \in H \) and \(\langle f, \xi_n \rangle_H = 0 \) for all \(n = 0, 1, 2, \ldots \), then \(f = 0 \) \(\mu \)-almost everywhere.

(iii) Show that \(||\xi_n||_V \rightarrow 0 \) if and only if for some \(\epsilon > 0 \) we have \(\mu([1 - \epsilon, 1]) = 0 \).

3. Suppose that \(E \subseteq [0, 1] \) is measurable and there exists a \(\delta > 0 \) such that

\[
|E \cap [x-r, x+r]|_e \geq \delta r
\]

for all \(x \in (0, 1) \) and \(r > 0 \) such that \((x-r, x+r) \subseteq [0, 1] \). Prove that \(|E| = 1 \).

4. Assume that \(E \) is a measurable subset of \(\mathbb{R}^d \) such that \(|E| < \infty \).

 (a) Suppose that \(f : E \rightarrow [-\infty, \infty] \) is measurable and finite a.e. Given \(\epsilon > 0 \), prove that there exists a closed set \(F \subseteq E \) such that \(|E \setminus F| < \epsilon \) and \(f \) is bounded on \(F \).

 (b) For each \(n \in \mathbb{N} \) let \(f_n \) be a measurable function on \(E \), and suppose that

\[
\forall x \in E, \quad M_x = \sup_{n \in \mathbb{N}} |f_n(x)| < \infty.
\]

Prove that for each \(\epsilon > 0 \), there exists a closed set \(F \subseteq E \) and a finite constant \(M \) such that \(|E \setminus F| < \epsilon \) and \(|f_n(x)| \leq M \) for all \(x \in F \) and \(n \in \mathbb{N} \).

5. Let \(f : [0, 1] \rightarrow \mathbb{R} \) be a monotone nondecreasing function. Assume \(f \) is differentiable almost everywhere.

 (i) Prove that \(\int_0^1 f'(x) dx \leq f(1) - f(0) \).

 (ii) Let \((f_n)_n \) be a sequence of monotone nondecreasing functions on \([0, 1] \) such that \(F(x) = \sum_{n=1}^\infty f_n(x) \) converges for all \(x \in [0, 1] \). Show that \(\sum_{n=1}^\infty f'_n(x) \) converges almost everywhere on \([0, 1] \) and \(F'(x) = \sum_{i=1}^\infty f'_i(x) \) a.e.

 Hints: (i) Use Fatou’s Lemma.

 (ii) Set \(R_n(x) = \sum_{k=n}^\infty f_n(x) \). Use that \(R_n(1) - R_n(0) \rightarrow 0 \) and (i) to show that \(|R'_n(x)| \rightarrow 0 \) almost everywhere.
6. Given $f \in L^1(\mathbb{R})$, define

$$g(x) = \int_{-\infty}^{x} f(t) \, dt, \quad x \in \mathbb{R}.$$

Given $c > 0$, prove that $g(x + c) - g(x)$ is an integrable function of x, and show that

$$\int_{-\infty}^{\infty} (g(x + c) - g(x)) \, dx = c \int_{-\infty}^{\infty} f(t) \, dt.$$

7. Let $H = L^2(\mathbb{R})$ be the Hilbert space of square integrable functions on \mathbb{R} and define $U : H \to H$ by

$$U(f)(x) = f(x - 1)$$

for $f \in H$. Show that U has no nonzero eigenvectors.

8. Show that $f : [a, b] \to \mathbb{R}$ is Lipschitz if and only if f is absolutely continuous and $f' \in L^\infty[a, b]$.

Note: Give a direct proof that Lipschitz functions are absolutely continuous.