Analysis Comprehensive Exam
Spring 2018

Student Number:

Instructions: Complete 5 of the 8 problems, and circle their numbers below — the uncircled
problems will not be graded.

Write only on the front side of the solution pages. A complete solution of a problem
is preferable to partial progress on several problems.
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1. Let A C R be a measurable set. For z € R denote A+ x = {a+ z : a € A}. Prove that
if A satisfies
A\ (A+2)|=0 VzeR,

then either |A| =0 or |[R\ A| = 0. (Note that here A\ B={x € A:x ¢ B}).

2. Let E C R"™ be measurable with |E| < oo, and let f : F — R, fy : E — R be
measurable, k > 1. Assume that every subsequence of { fi} contains another subsequence
that converges to f a.e. on F.

(i) Prove that {fx} converges in measure to f on E.
(ii) Prove the following extension of Lebesgue’s Dominated Convergence Theorem: as-
sume that there is an integrable function ¢ : £ — R such that for £ > 1,
|fe ()| < o () for a.e. z € 1.

Prove that f is integrable and

klggo Efk (x)dx = /Ef(x) dz.

3. Let g(x) = 2? + 1 + sin(2018z).

i. Prove that the function ¢ : [0,00) — [0,00) defined by ¢(s) = [{x : g(z) < s}| is
continuous.
ii. Let
F={feLl'R):f:R—][0,1] and /le}.
R

Prove that inf ;3 fR fg is obtained for a function f of the form f = ll;,. for some
constant s € R.

4. Let f:[0,1] — [0, 1] be defined by f (0) = 0 and

1
sin —

€ (0, 1].
. e

f(x) =2

Show that f is absolutely continuous on [0, 1]. Give an example of a function ¢ : [0, 1] —
[0, 1] that is of bounded variation, and such that ¢ exists in (0, 1] but such that ¢ o f is
not absolutely continuous in [0, 1].

5. Let f:R? — R be a function with continuous partial derivatives. Denote U = [0,1]> C
R2. Assume that 0f/0z and 9 f /0y are Lipschitz functions which vanish on the boundary
of U (that is, they are equal zero on the boundary).
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i. Denote h = a%(%)' Prove that A is defined almost everywhere on U and that for
every (z,y) € U we have

F(a.y) = f(z,0) + / h

[0,2]x[0,y]

ii. Prove that for almost every (x,y) € U we have

of
—(l',y) :/ h(I’, S)dS.
Oz 0.4]
iii. Prove that the functions a%(g—i) and a%(%) are equal almost everywhere on U.

6. i. Let £, C R", k € N, be sets which satisfy £y C Fy C E3 C ..., and denote
E = U Eg. Assume that |E|. is finite. Prove that

||, = lim |Egl..
k—o0

Here the subscript e denotes the exterior Lebesgue measure.

ii. Let £ be a set in R" with |E|, finite and positive. Let 0 < § < 1. Show that there
is a set By C E with
|Egl, =0 |E]|,.

7. Suppose that u, v are probability measures on [0, 1], and

/ tjd,u(t):/ tdv (t)
[0,1] [0,1]

for all 7 > 0. Assume also that u ({0}) = v ({0}). Prove that for every d € [0, 1],
p (10, d)) = v ([0, d)).

(Hint: you may assume Weierstrass’ approximation theorem).

8. Let B be an infinite dimensional Banach space and let J be an index set. Assume
that {z;};c; C B is a Hamel basis for B, that is:

i. Every y € B can be written as a finite linear combination of vectors in {a:j}:
N
y= Z ;T
j=1

ii. The elements in B are linearly independent: If Zjvzl a;x; = 0 then o; = 0 for every
7.

Prove that the set J is uncountable.
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