The Curve Graph of the 5-Punctured Sphere

Our Project

Hensel, Przytycki, and Webb proved the hyperbolicity constant of the curve graph of a surface is ≤ 17, and we show it is >1 in the case of the 5 -punctured sphere.

Hyperbolicity

Hyperbolic space comes in many forms: trees, the hyperbolic plane, curve graphs of surfaces, etc.

Euclidean space is not hyperbolic but a tree is

Centered Triangles

A triangle in $C(S)$ is δ-centered if there exists a vertex that is at most δ away from each side. If all triangles are δ-centered, then we say $C(S)$ is δ-hyperbolic.

0-centered triangle

1-centered triangle

Curve Graph C(S)

The curve graph $C(S)$ of a surface S is the graph where vertices are curves and the edges represent disjointedness.

Not 1-Centered

Lemma: A geodesic triangle is not 1-centered if the following hold:
1.) $\min \{d(b, \alpha): \alpha \in S\} \geq 3 ;$
2.) $\min \left\{\mathrm{d}(c, \alpha): \alpha \in \mathrm{S}_{2}\right\} \geq 3$;

Checking Condition 2

$C\left(\Sigma_{0,5}\right)$ is not 1-hyperbolic

Theorem (Aurin-Thornburgh): The
following curves form a geodesic triangle that is not 1-centered.

Future Work
Extending our result to $C\left(\Sigma_{0, n}\right)$ for all $\mathrm{p} \geq 6$ and possibly to surfaces with genus. Can we do something similar in the arc graph?

Acknowledgments

We would like to thank our mentors Dr. Wade Bloomquist and Dr. Dan Margalit. We would also like to thank the NSF for funding this research.

