The Simple Arc Graph

Arc graph: vertices are arcs and edges are disjointness.

Non-Simple Arcs

Used by Maryam Mirzakhani in her research!

Arcs can now self-intersect.

Question:

What is adjacency in the non-simple arc graph?

New condition: Arcs a, b are adjacent if $i(a,b) \le i(a,a) + i(b,b).$

The Non-Simple Arc Graph

Sophie Gardiner (Haverford College) and Alyssa McPoyle (Bowdoin College) Mentors: Dr. Wade Bloomquist and Dr. Dan Margalit

Goal:

Non-simple arc graph is connected with infinite diameter.

Connected

Theorem [Gardiner–McPoyle]: The non-simple arc graph is connected.

Key tool: unicorn arcs and unicorn paths.

Idea of proof: Consecutive unicorn arcs still adjacent in non-simple arc graph \rightarrow use unicorn paths to connect any vertices in our non-simple arc graph.

Acknowledgements

We would like to thank our mentors Dr. Wade Bloomquist and Dr. Dan Margalit. This project was supported by the NSF and the Georgia Tech College of Sciences.

Theorem (in progress): The non-simple arc graph has infinite diameter.

Consider the inclusion:

Want: distances are coarsely preserved. Take a dist D path in NSA(S) between simple arcs *a* and *b*:

For example, this would mean that we can't find a non-simple arc that makes this distance 4 pair distance 2.

If we prove this, then $D' \leq 3D$.

The arc graph is infinite diameter, so the non-simple arc graph must be as well.

Infinite Diameter

 $\mathcal{A}(S) \to \mathcal{NSA}(S)$