The Non-Simple Arc Graph
Sophie Gardiner (Haverford College) and Alyssa McPoyle (Bowdoin College)
Mentors: Dr. Wade Bloomquist and Dr. Dan Margalit

Arc graph: vertices are arcs and edges are disjointness.

Goal: Non-simple arc graph is connected with infinite diameter.

Connected

Theorem [Gardiner–McPoyle]: The non-simple arc graph is connected.

Key tool: unicorn arcs and unicorn paths.

Idea of proof: Consecutive unicorn arcs still adjacent in non-simple arc graph → use unicorn paths to connect any vertices in our non-simple arc graph.

Question: What is adjacency in the non-simple arc graph?

New condition: Arcs a, b are adjacent if $i(a, b) \leq i(a, a) + i(b, b)$.

2 ≤ 8 + 0

Non-Simple Arcs

Used by Maryam Mirzakhani in her research!

Arrows can now self-intersect.

Infinite Diameter

Theorem (in progress): The non-simple arc graph has infinite diameter.

Consider the inclusion:

$A(S) \rightarrow NSA(S)$

Want: distances are coarsely preserved. Take a dist D path in NSA(S) between simple arcs a and b:

Step 1: modify path to have no consecutive non-simple arcs

Lemma (in progress): For any two adj. non-simple arcs, there is a simple arc adj. to both.

Step 2: replace all non-simple arcs with simple

What’s the largest distance $D’$ this path can be?

Lemma (in progress): Non-simple distance $2 \Rightarrow$ at most distance 3 in simple arc graph.

For example, this would mean that we can’t find a non-simple arc that makes this distance 4 pair distance 2.

If we prove this, then $D’ \leq 3D$.

The arc graph is infinite diameter, so the non-simple arc graph must be as well.

Acknowledgements

We would like to thank our mentors Dr. Wade Bloomquist and Dr. Dan Margalit. This project was supported by the NSF and the Georgia Tech College of Sciences.