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Abstract

First we give bounds on the ratio of the maximum and average size of an independent set for

graphs of high girth. Then we give tight bounds for the difference of the minimum and maximum

chromatic number to the average chromatic number over induced subgraphs. Lastly we present

an algorithmic way to find the maximum chromatic number given a degree sequence.

Introduction

LetG = (V, E) be a simple graphwith vertex set V and edge setE. An induced subgraph, denoted

G[X ] for some X ⊂ V , is the subgraph with the vertex set X and all edges from G that have both

vertices in X . An independent set U is a subset of the vertices so that G[U ] contains no edges.

We let α(G) denote the independence number, the size of the largest independent set in G.

A proper coloring of G is an assignment of colors to the vertices of V so that no adjacent vertices

are colored the same. Thus a proper coloring is a partitioning of the vertex set into independent

sets. Let the chromatic number, denoted χ(G), be the least number of colors necessary to prop-

erly color G.

A graph is triangle-free if no three vertices induce three edges. Let the girth of a graph be the

length of its shortest cycle. Thus, a triangle-free graph has girth at least 4.

Figure 1. A maximal independent set in red Figure 2. The Moser Spindle properly colored with 4 colors

Average Independence Number

One fairly natural question to consider is whether or not a random independent set from a graph

will be close in size to the largest possible independent set. Towards this goal, we make the

following definitions:

α(G) is the average size of independent sets in G

An independent set is maximal if it is not contained in any other independent sets.

αM (G) is the average size of maximal independent sets in G.

For graphs G and G′, the graph G + G′ is the graph G t G′ with an edge added between every

v ∈ G and v′ ∈ G′

r(G) = α(G)/α(G)

Our question then becomes finding bounds on r(G).

One may compute that limn→∞ r(Kn) = 1 and limn→∞ r(Kn + Em) = m, where Em denotes the

graph with m vertices and no edges. As such, we impose restrictions on the girth of G.

In the triangle-free case, it is conjectured that the lower bound for this ratio is 4/3 (Davies et al.

2017)[1]. Because current lower bounds for α(G) are proven by finding lower bounds for α(G),
showing this ratio has a lower bound greater than 1 would immediately improve known lower

bounds on α(G).
Towards finding an upper bound for r(G), we have shown that αM (G) ≤ 2α(G), meaning that

bounding αM (G) from below in terms of α(G) would bound r(G) from above. We conjecture

that, if G is of girth at least 5, r(G) ≤ 4. We proved this for the case where no vertices of G share

neighbors in any independent set I ⊂ G such that |I| = α(G).

Average Chromatic Number

For graph G = (V, E), with n = |V |, let U be chosen uniformly at random from the power set of

V . We define the average chromatic number as

χ(G) = E[χ(G[U ])] = 1
2n

∑
X⊂V

χ(G[X ])

Figure 3. Complete graph on 6 vertices,
Turán graphs of maximal independent sets size 2, 3

We consider the minimum and maximum values χ.
For fixed n:

Minimum: χ ≥ χ
2 , tight for complete graphs.

Minimum: χ − χ
2 ≥ 1

2n for non-complete graphs,

tight for Kn−1 t K1.

Maximum: χ − χ
2 ≤ n

8 , tight for Turán graphs

with maximal independent sets of size 2 or 3.

For fixed χ:

Maximum: χ − χ
2 ≥ (1 − on(1))χ

2 , ex: Turán Graphs

Proof Techniques
We use the following ideas to prove the above state-

ments:

χ(G[U ]) + χ(G[V \ U ]) ≥ χ(G) for all U ⊂ V .

If G is not k-partite,
then in any coloring of the vertices there are

two vertices of different color and non-adjacent.

Strong induction on the chromatic number.

Triangle-free and large girth

Since the above extremal examples are quite dense, a natural next question is for more sparse

graphs. For triangle-free graphs we conjecture that the maximum value of χ − χ
2 is

1 − 2
n
2+1−n for n even and 1 − 2

n−1
2 +1−n for n odd.

Figure 4. Complete bipartite graphs

Figure 4. Complete bipar-

tite graphs that maximize χ −
χ
2 for triangle free graphs.

This value for these graphs is
5
8, 3

4, 13
16, 7

8, respectively.

Girth at least 5
For larger girth we conjecture that the best upper bound on χ − χ

2 is 1 − on(1), the similar to the

triangle free graphs. Again, below we give the first few unique graphs with maximum χ − χ
2 for

girth 5 and 6.

‘

Maximum Chromatic Number of a Degree Sequence

Adegree sequence of a graph G is a non-increasing sequence of the vertex degrees of its vertices.

We let s be such a sequence on n vertices, writing s = v1, ..., vn where deg(v1) ≥ ... ≥ deg(vn).
We consider how to maximize the chromatic number across all possible graphic configurations

of s, defining χ(s) to be the maximum chromatic number that s yields. We first provide the

outline of an alternate constructive proof of the bound given by the Welsh-Powell Algorithm:

χ(s) ≤ 1+max(min(i−1, deg(vi)) [2]. We then investigate χ(sp), the maximum chromatic number

of s when we require graphs to be loop-free and connected.

Alternate Constructive Proof of an Upper Bound on χ(s)

We will show that χ(s) = |maximal clique of s|.
From s, construct a graphG that has χ(G) = k. Take a critical sub-graphH ofG. SinceH is critical,

it has at least k vertices with degree greater than or equal to k − 1. Take k of these vertices. From

these, we are able to form a k-clique while maintaining s (omitting the details of how this is done).

Thus, the resulting graph has degree sequence s and chromatic number k. Since we can do this

for any graph from s, χ(s) is maximized when the clique is maximized.

This yields the above bound. Let the maximal clique be made of v1, v2, ..., vi. For vi, note that

min(i − 1, deg(vi)) = i − 1 ; if not, then i − 1 < di, contradicting it being in the maximal clique. For

vi+1, note that i > di, else it would be in the maximal clique. Noting that i − 1 is the maximum of

all min(i − 1, deg(vi)) values and the maximal clique size is i, this gives the same bound.

Requiring Connectedness

Note that the above construction using maximal cliques may result in disconnected, loop-

containing, double-edged graph. We now investigate how the maximum chromatic number of

proper graphs on s, termed χ(sp), differs from χ(s).
For cycles of n vertices, each with n − 2 additional

edges connecting to single-degree neighbors, χ(s) =
nwhile χ(sp) = 3. Thus, χ(s) can bemuch larger than

χ(sp). To the left, we show the graphs for n = 4.
However, for this s, the average degree d is small

(d=2). We are interested in further exploring the fol-

lowing possible conjectures regarding d, χ(sp), and
χ(s):

For s with average degree d and total number of vertices n ≥ 2d, χ(sp) ≥ d.

As n(or d) → ∞, χ(sp) → χ(s)
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