Persistent Legendrian Contact Homology

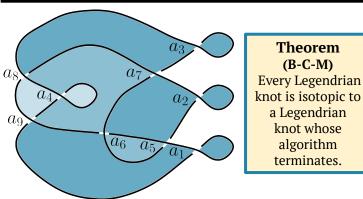
Maya Basu, Ethan Clayton, Fredrick Mooers UC Berkeley UIUC Virginia Tech Acknowledgments: We would like to thank our mentors Austin Christian, Daniel Irvine, and Weizhe Shen for their wonderful help and guidance. This project was supported by the NSF grants #1745583, #1851843, #2244427 and the GaTech College of Sciences.

Background

Definition: A Legendrian knot in \mathbb{R}^3 is a simple closed curve satisfying the differential equation dz-ydx=0.

Goal: Distinguish Legendrian knots by finding invariants that are preserved under (Legendrian) isotopy.

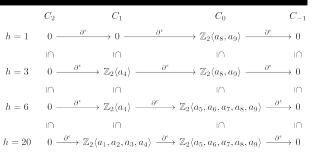
Method: Assign "heights" to each crossing in the *xy*-projection via our flooding algorithm and compute persistent homology.



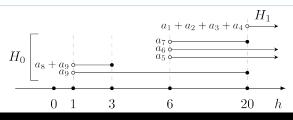
		-		
Tiers	1st	2nd	3rd	4th
Crossings	$a_{1}a_{2}a_{3}$	$a_{5} a_{6} a_{7}$	a_4	$a_{8}^{} a_{9}^{}$
Heights	20	6	3	1

Our Flooding Algorithm

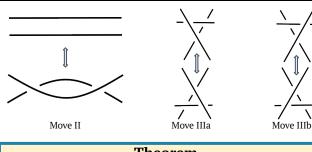
Persistent Homology



From a Legendrian knot we get a chain complex (above) at each height allowing us calculate persistent homology (below).

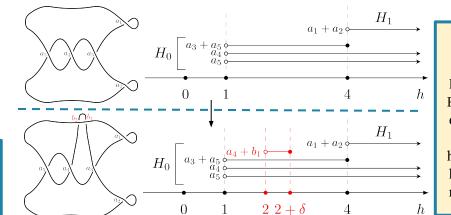


Legendrian Reidemeister Moves



Theorem

Two Legendrian knots are isotopic <u>only if</u> they are related by a sequence of the above Reidemeister moves in their *xy*-projection.



Barcode Analysis

Theorem (Work in Progress)

For any valid Legendrian Reidemeister move, there exist height assignments such that the persistent homology *barcodes* of the knot before and after the move are 2δ -interleaved.