CONCORDANCES OF LINEAR COMBINATIONS OF TORUS KNOTS

TO L-SPACE KNOTS

Dan Guyer, Thomas Sachen, Advisor: Dr. JungHwan Park

Summer 2020 REU at the Georgia Institute of Technology

Background

• **Knot:** An embedding of S^1 into \mathbb{R}^3 (or S^3 , its one-point compactification).

- **Torus Knot** (T(p,q)): A knot that can be drawn on a torus T, *i.e.*, an embedding $S^1 \to T$. These knots are uniquely determined (up to isotopy) by coprime integers p and q, where T(p,q) winds around the torus p times longitudinally (around the donut hole) and q times meridionally (through the donut hole).
- Mirror Operation: An operation on a knot that produces a knot as if it was reflected about a mirror, denoted by -K for a knot K.

• Connected Sum: An operation on two knots that cuts a strand from each knot to then join the two knots together, denoted by K#J for two knots K,J.

- **L-space:** a \mathbb{Q} -homology 3-sphere with the "simplest" possible Heegaard-Floer homology, *i.e.* for which $|H_1(Y;\mathbb{Z})| = \operatorname{rank} \widehat{HF}(Y)$. Includes lens spaces.
- L-space knots: Knots that admit positive Dehn surgeries to L-spaces. Includes all positive torus knots.
- Knot Invariant: A function with domain as the set of (isotopy classes of) all knots.

If an invariant gives two distinct values for two knots, then the knots are distinct.

- Examples:
 - * Alexander Polynomial: A symmetric polynomial in t, denoted by $\Delta_K(t)$ for a knot K.
 - * **Determinant:** A knot invariant that associates an integer to each knot, denoted by det(K). Furthermore, $det(K) = \Delta_K(-1)$.
 - * **Signature:** A knot invariant that associates an even number to each knot, denoted by $\sigma(K)$.

The Knot Concordance Group

- Slice: A knot is *slice* if it bounds a smooth disk in B^4 (the 4-D ball).
- Knot Concordance: Two knots K, J are concordant if K#-J is slice.
- Knot Concordance Group (\mathcal{C}): The group of concordance classes of knots with the operation of connected sum.
 - Associativity: Follows easily from the connected sum operation.
 - Identity: The class of all slice knots.
 - **Inverses:** Given a knot K, its inverse in C is -K, the mirror image of K.

$$\mathcal{C} \twoheadrightarrow \mathbb{Z}^{\infty} \oplus \mathbb{Z}_{2}^{\infty} \oplus \mathbb{Z}_{4}^{\infty}$$

• Concordance Invariant: A function with domain as the set of concordance classes of knots.

If a concordance invariant gives two distinct values for two knots, then the knots are not concordant.

- Examples:
 - * **Tau:** An integer valued concordance invariant, denoted by $\tau(K)$ for some knot K.
 - * **Upsilon:** A piecewise linear function defined over the interval [0,2], denoted by $\Upsilon_K(t)$.
 - * **Signature:** A knot invariant that associates an even number to each knot, denoted by $\sigma(K)$. (As previously described.)

Previous Work

- C. Livingston, [3]
 - Theorem 1.1 Let $\{p_i, q_i\}_{i=1,...,n}$ be a set of pairs of relatively prime positive integers with $2 \le p_i < q_i$ for all i and with n > 1. Then $\#_i T(p_i, q_i)$ is not concordant to an L-space knot.
- S. Allen, [2]
 - Conjecture 1.2 If a linear combination of torus knots is concordant to an L-space knot, then it is concordant to a positive torus knot.
 - Theorem 1.1 If the connected sum of distinct positive torus knots mT(p,q)#nT(r,s) is concordant to an L-space knot, then either m=0 and n=1 or m=1 and n=0.
 - Proposition 4.1 If the knot $K = T(p_1,q_1)\#T(p_2,q_2)\#\dots\#T(p_m,q_m)\#-T(p_1',q_1')\#\dots\cdots-T(p_n',q_n')$ where $m,n\geq 1$ is concordant to an L-space knot J, then

 $\frac{\prod_{i=1}^{m} \Delta_{T(p_i, q_i)}(t)}{\prod_{i=1}^{n} \Delta_{T(p'_i, q'_i)}(t)} = \Delta_J(t)$

- Aceto-Celoria-Park, [1]
 - Corollary 1.7 Any smooth concordance class in the subgroup generated by 2-bridge knots is represented by a connected sum of 2-bridge knots K such that if J is concordant to K, then $\det(K)$ divides $\det(J)$. Moreover, as a connected sum of 2-bridge knots K is uniquely determined up to isotopy.

New Results

Theorem 1. Let K be a nontrivial linear combination of $T(2, q_i)$ torus knots. Then K is not concordant to an L-space knot.

- Proof Sketch:
 - Suppose K is concordant to an L-space knot J
 - Compute det(K).
 - Compute det(J) using Proposition 4.1 of [2].
 - From Corollary 1.7 of [1], we find that det(K) | det(J).
 - This reduces to the question answered by Livingston in [3].

Theorem 2. Let K be a nontrivial linear combination of torus knots. Suppose there exists a $-T(p_m, q_m)$ such that $p_m > p_i$ for all $i \neq m$. Then K is not concordant to an L-space knot.

Proof Sketch:

- Suppose K be concordant to an L-space knot J and that there exists a $-T(p_m,q_m)$ such that $p_m>p_i$ for all $i\neq m$.
- By analyzing the Upsilon invariant, $\Upsilon_K(t)$, we find that $\Upsilon_K'(t)$ "jumps" first at $\frac{2}{n_{\text{total}}}$.
- At $\frac{2}{p_m}$, we have that $\Upsilon_K'(t)$ is decreasing.
- Hence K cannot be concordant to J since $\Upsilon_J^\prime(t)$ is increasing for all L-space knots.

Further Directions

- Within Conjecture 1.2 of [2]:
 - Examine linear combinations of torus knots with a fixed p for all torus knots in our connected sum.
 - Examine linear combinations of torus knots with odd p and q for all p, q.
 - Examine linear combinations of torus knots with p being even for all p.

• Further questions:

- Can any nontrivial connected sum of L-space knots be concordant to an L-space knot?
- Can any nontrivial linear combination of L-space knots be concordant to an L-space knot?

Acknowledgements

- Thanks to Rene Welch at UW-Madison for constructing this poster template.
- [1] Paolo Aceto, Daniele Celoria, and JungHwan Park. *Rational cobordisms and integral homology*. 2018. arXiv: 1811.01433 [math.GT].
- [2] Samantha Allen. "Concordances from differences of torus knots to *L*-space knots". In: *Proc. Amer. Math. Soc.* 148.4 (2020), pp. 1815–1827. ISSN: 0002-9939. DOI: 10.1090/proc/14833. URL: https://doi.org/10.1090/proc/14833.
- [3] Charles Livingston. "Concordances from connected sums of torus knots to L-space knots". In: New York J. Math. 24 (2018), pp. 233–239. URL: http://nyjm.albany.edu:8000/j/2018/24_