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Gradient Descent (GD)

Background

Basic Algorithm Process: 

1. x is a minimizer of ||Ax-b||

2. Set random initial condition for x 

3. Iterate over the time step 

4. Find the local minimum

What is GD?  One of the most common 
optimization algorithm used to calculate the 
minimum value of a differentiable function.
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2 Ways of Measuring Algorithm Behavior:  

Normalized Residual 

Model Error

**Other optimization algorithms have been 
developed   based on GD that deal with different data 
types



Methods Introduction

Linearized Bregman (LB) Iterative Shrinkage Thresholding Algorithm 
(ISTA)

Iterative Formula

Time Step

Shrinkage Process

Background

LB & ISTA are both based on Gradient Descent  but deal with sparse solutions 



Variable Definitions & Data Setup 
Variable Definition Data Setup

k Number of iterations Chose varying k, we will specify in the following slides 

A A matrix; normally a tall matrix because in the real 
world there are often many variables to consider

800*70 matrix of normally distributed random variables

b Created by the multiplication of A and xTrue, with 
added noise 

A * xTrue + (0.1 * noise ) 

xTrue The correct value, the algorithm’s final output 
should be around this vector value

A size 70  vector created with a random exponential 
decay, including large, small, and zero entries; this is done 
to mimic sparse solutions in the real world 

Noise Source of chatter random normal distribution with mean=0 and variance=1 

t
k

Time step Dynamic time step for LB and constant time step for ISTA 

x
0

Initial guess for x Vector of zeros

Background



Preview of Our Findings  & Applications 
● Linearized Bregman performs best with large entries 

and a large λ 

● ISTA performs best with small entries and small λ
● Linearized Bregman outperforms ISTA when 

subsampling 

● Hybrid Method is a combination of both methods and 

outperforms both LB and ISTA when dealing with a mix 

of entry sizes

LB
ISTA
Hybrid

Real World 
Applications 

Machine 
Learning 

Subsampling 
makes problem 

solvable 
Imaging

Inverse 
Parameter 

Fitting

Preview



Choices concerning hyperparameter λ 0.01

1

Though converging slightly quicker early on when λ is small, 
it would lead to overfitting/ fluctuation later on. Overall, a 
moderate or comparatively large λ is most suitable for LB, a 
reasonable range could be from 0.5 - 1. 

Comparing λ

LB ISTA

Obviously, if we put a large λ in ISTA, the residual would 
decrease to a very limited extent. (Basically predicting 
most entries as zero). ISTA needs a very small λ to reach 
a low residual. A good value for λISTA is around 0.01. 



Choices concerning hyperparameter λ
Small Entries Zero Entries Large Entries

For large entries, The difference between different  λ is very small early on in the iterations and overall convergence 
rate is quick, while comparatively larger  λ could result in smaller chatter later on. 

0.01

1

LB

 For small entries and small λ, ISTA tends to predict well and converge quickly without fluctuation in later iterations. 

ISTA

Comparing λ



The Hybrid Method

Introduction to Hybrid Method & Initial Results

Iteration KIteration = 0 Max Iteration

Linearized 
Bregman (LB)

Linearized Bregman (LB) or ISTA 
(follow ISTA only if  |x 

hybrid
|< x

mid 
 else follow LB)

General Idea:   x 
hybrid 

 follows x
lb 

 for the first K iterations, then 
smaller entries follow ISTA and larger entries follow LB

Base Case Scenario:

λLB = 1
λISTA = 0.01
K = 5
K

max
= 20

X
mid  

= 1.0
 

Observations: 
● As the algorithm states, for first five 

iterations, the Hybrid method is 
exactly same as LB, thus following the 
same pattern. 

● After five iterations, the residual for 
Hybrid method starts to be lower 
than other two methods. 

● As a result, the Hybrid method makes 
sense and we will include the Hybrid 
method in following analysis. 

LB

ISTA

Hybrid



Subsampling .vs. No Subsampling 

What is subsampling? Taking a different 

random subset of the data by choosing k 

rows out of entire set for each iteration. 

Why is LB more suited for subsampling? 
ISTA leaves out certain information, because it 
uses x

k
, which undergoes a shrinkage process 

every iteration, also since Ak is mostly different 
from iteration to iteration  when subsampling, 
when throwing out information, the impact would 
be more severe than using the complete dataset. 

while LB retains all information which naturally 
makes LB more fitted for subsampling

Why subsampling? In real world setting, 

iterating over the entire dataset usually 

mean a very time-consuming process. By 

subsampling, we strive to solve problems in 

shorter periods of time with only few full 

datapasses. 

(Sub)Sampling



After Subsampling
Parameters :
● K= 16(top) / 50 (bottom)
● K

max
= 48(top) / 150 (bottom)

● Rows per iteration = 50 (top)/ 
16 (bottom)

● Noise = 0.1 * random normal 
variable

Results from Subsampling 

Observations from both setups: 
● Consistent with the analytical 

result, Linearized Bregman 
converges much quicker than 
ISTA when subsampling

● Hybrid method has a lower 
residual than ISTA and LB since it 
is able to perform well with both 
large and small entries 

LB

ISTA

Hybrid
x

mid
 = 1.0

x
mid

 = 1.0

x
mid

 = 2.0

x
mid

 = 2.0



Comparing Entries 
Zero Entries Small Entries Large Entries 

undefined

Results from Subsampling 

LB

ISTA

Hybrid

x-xTrue



Submatrix size for subsampling

Result for Subsampling 

Flat Subsampling
Tall Subsampling
Square Subsampling

Linearized Bregman 

Flat subsampling mean residual: 0.0194
Tall subsampling mean residual: 0.0255
Square subsampling mean residual: 0.0218

Flat subsampling mean residual: 0.05381
Tall subsampling mean residual: 0.02483
Square subsampling mean residual: 0.0311

Flat Subsampling

Tall Subsampling
Square Subsampling

ISTA 



Conclusion & References

Emmanoil Daskalakis, Felix J. Herrman, and Rachel Kuske, Accelerating Sparse Recovery by Reducing Chatter  (2020)

W. Yin, S. Osher, D. Goldfarb, and J. Darbon, Bregman iterative algorithms for l1- minimization with applications to compressed sensing, SIAM Journal on Imaging 

Sciences, 1 (2008), pp. 143–168, https://doi.org/10.1137/070703983, http://dx.doi.org/10. 1137/070703983, 

https://arxiv.org/abs/http://dx.doi.org/10.1137/070703983.

D. A. Lorenz, F. Schöpfer, and S. Wenger, The linearized Bregman method via split feasibility problems: Analysis and generalizations, SIAM Journal on Imaging 

Sciences, 7 (2014), pp. 1237–1262, https://doi.org/10.1137/130936269, http://dx.doi.org/10.1137/ 130936269, 

https://arxiv.org/abs/http://dx.doi.org/10.1137/130936269.

D. A. Lorenz, S. Wenger, F. Schöpfer, and M. Magnor, A sparse Kaczmarz solver and a linearized Bregman method for online compressed sensing, in 2014 IEEE 

International Conference on Image Processing (ICIP), Oct 2014, pp. 1347–1351, https://doi.org/10.1109/ ICIP.2014.7025269.

Through this dynamical study, we observed that Linearized Bregman functions best with large entries and large λ 
while ISTA operates best with small entries and small λ. This prompted us to create the Hybrid algorithm which 
benefits from both quick convergence as well as less chatter. Furthermore, we discovered that LB outperforms 

ISTA when subsampled. To extend on this research, more studies regarding the parameter choices (eg. noise, initial 
guess x

0
, data setup, specific rows when subsampling) could be conducted .


