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Abstract. Let {sj}nj=1 be positive integers. We show that for any 1 ≤ L ≤ n,∥∥∥∥∥∥
n∏
j=1

(1− zsj )

∥∥∥∥∥∥
L∞(|z|=1)

≥ exp
(
1

2e

L

(s1s2...sL)
1/L

)
.

In particular, this gives geometric growth if a positive proportion of the {sj}
are bounded. We also show that when the {sj} grow regularly and faster than
j (log j)2+ε, some ε > 0, then the norms grow faster than exp

(
(logn)1+δ

)
for

some δ > 0.
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1. Introduction

A celebrated short 1959 paper of Erdős and Szekeres [14] posed a number of
problems about the growth or decay of "pure power products"

(1.1) Pn (z) =

n∏
j=1

(1− zsj )

and their norms
‖Pn‖ = ‖Pn‖L∞(|z|=1) .

Here {sj}nj=1 are positive integers. Perhaps the most well known is the following:

Problem
Let

M (s1, s2, ..., sn) =

∥∥∥∥∥∥
n∏
j=1

(1− zsj )

∥∥∥∥∥∥
and

f (n) := inf {M (s1, s2, ..., sn) : s1, s2, ..., sn ≥ 1} .
Determine the growth of f (n) as n→∞.
Erdős and Szekeres proved that

lim
n→∞

f (n)
1/n

= 1.
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This provided a contrast to a 1964 paper of C. Sudler [26] where it was shown that

lim
n→∞

M (1, 2, ..., n)
1/n

= 1.219... > 1.

Perhaps the first major advance is due to Atkinson in 1961 [4], showing that

f (n) = exp
(
O
(
n1/2 log n

))
,

while in 1982, Odlyzko [22] proved that

f (n) = exp
(
O
(
n1/3 (log n)

4/3
))

.

As far as we are aware, the best current result is the 1996 estimate of Belov and
Konyagin [7]

f (n) = exp
(
O
(

(log n)
4
))

,

a consequence of their work on nonnegative trigonometric polynomials. We note
that in many of these upper bounds, the {sj} are not necessarily distinct. Erdős
and Szekeres asserted that f (n) ≥

√
2n. This is still the best general lower bound,

though for n = 7, 9, 10, 11, Maltby established a larger lower bound [20], [21]. Erdős
[13, p. 55] later conjectured that f (n) should grow faster than any power of n.
There are several important related results: for example, Bell, Borwein, and

Richmond [6] showed in 1998, that if L is a positive integer,

lim inf
n→∞

M
(
1, 2L, 3L, ..., nL

)1/n
> 1.

Borwein [9] showed that if none of the {sj} are divisible by a given prime p,
M (s1, s2,..., sn) grows at least as fast as pn with strict inequality if p ≥ 15. Bour-
gain and Chang [11] showed that we can choose {s1, s2, ..., sn} ⊂ {1, 2, ..., N} with
n/N → 1/2 such that

M (s1, s2, ..., sn) ≤ exp
(
O
(√

n
√

log n log log n
))

but if τ > 0 is small enough and n > (1− τ)N , then for all {s1, s2, ..., sn} ⊂
{1, 2, ..., N} ,

M (s1, s2, ..., sn) > exp (τn) .

There are several other pointwise problems in [14] that we do not have space to
review here. Some relevant references for these are [1], [2], [3], [5], [15], [16], [17],
[19], [27].
This paper is organized as follows. We state our new results in Section 2. The-

orem 2.1 is proved in Section 3. Theorem 2.2 and Corollaries 2.3, 2.4 are proved
in Section 4. We close this section with some notation. We use [x] to denote the
largest integer ≤ x to denote the fractional part. Pn is always defined by (1.1).
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2. New Results

Our first result, proved using Poisson integral representation, provides a lower
bound for M (s1, s2, ..., sn) that is useful, when sj grows somewhat slower than j.

Theorem 2.1
Let n ≥ 1 and 1 ≤ s1 ≤ s2 ≤ ... ≤ sn. Let 1 ≤ L ≤ n. Let Pn be defined by (1.1).
Then
(a)

(2.1) ‖Pn‖ ≥ exp

(
1

2e

L

(s1s2...sL)
1/L

)
.

(b) Moreover, for any p > 0,

‖Pn‖ ≥
(√

πΓ
(

1
2p+ 1

)
Γ
(

1
2p+ 1

2

) )1/p(
exp

(
pL

2e (s1s2...sL)
1/L

)
− 1

)1/p

.

(2.2)

Remarks
(i) Let r ∈ (0, 1). Observe that if, for example, sj ≤ A for 1 ≤ j ≤ [rn], then (a)
gives

‖Pn‖ ≥ exp

(
[rn]

2eA

)
.

Thus we obtain geometric growth. As a second example, if sj ≤ j
1+(log j)2 , for

1 ≤ j ≤ [rn], estimation of the product in (2.1) shows that

‖Pn‖ ≥ exp

(
1

2
(log [rn])

2
(1 + o (1))

)
.

However, if all {sj} are distinct, so that sj ≥ j, the estimate is not useful.
(ii) When p = 1, (b) gives

‖Pn‖ ≥
π

2

(
exp

(
L

2e (s1s2...sL)
1/L

)
− 1

)
.

This is better than the estimate in (a) except when the exponential term is close
to 1.
While Theorem 2.1 works well when the {sj} do not grow rapidly, our second

result, proved using Kellogg’s extension of the Hausdorff-Young inequalities, works
well for rapidly growing or separated {sj}:

Theorem 2.2
Let Ik =

{
2k−1, 2k−1 + 1, ..., 2k − 1

}
for k ≥ 1. Let 1 ≤ s1 ≤ s2 ≤ ... ≤ sn.

Assume that Ik contains `k ≥ 0 of the {sj}nj=1 for k ≥ 1, so that
∑∞
k=1 `k = n.

Let 1 < p ≤ 2 and ε = 2
p (p− 1). Then for n ≥ 2,

(2.3) ‖Pn‖ ≥ exp

(
C

{ ∑∞
k=1 `

ε
k

(n log n)
ε

}p/2)
.
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Here C depends on p but is independent of n and the {sj}.

Corollary 2.3
If C1 > 0, B > 2 and for all k

(2.4) `k ≤
C1n

(log n)
B
,

then for some δ > 0, C2 > 0,

(2.5) ‖Pn‖ ≥ exp
(
C2 (log n)

1+δ
)
.

Here C2, δ are independent of n and the {sj}, but depend on B,C1.

Corollary 2.4
If for some τ > 0, there are at least nτ of the {Ik} containing at least one sj , then
for some δ > 0,

(2.6) ‖Pn‖ ≥ exp
(
Cnδ

)
.

Example
Let B > 2 and

sj =
[
j (log j)

B
]
, j ≥ 1.

Given k ≥ 1, the largest j for which

sj ≤ 2k − 1

satisfies
j ≤ 2k

(
log 2k

)−B
(1 + o (1))

It follows that given large n ≥ 1, there are at most O
(
n (log n)

−B
)
of {sj}nj=1

lying in any Ik. Then the hypotheses of Corollary 2.3 are satisfied, and we have
the lower bound (2.5).

3. Proof of Theorem 2.1

Erdős and Szekeres asserted that

f (n) := inf {M (s1, s2, ..., sn) : s1, s2,..., sn ≥ 1} ≥
√

2n.

Briefly, their proof [14, p. 34 ff.] runs as follows: assume that for some increasing
integers, {aj}rj=1 and another distinct set of increasing integers {bj}

r
j=1 , (so that

there is no intersection between the {aj} , {bj})

(3.1)
r∑
j=1

zaj −
r∑
j=1

zbj =

n∏
j=1

(1− zsj ) .

In particular all coeffi cients of powers of z are ±1. Then as the right-hand side has
a zero of multiplicity n at 1, we can differentiate the left-hand side k times and set
z = 1 to obtain

r∑
j=1

akj =

r∑
j=1

bkj , k = 0, 1, ..., n− 1.
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They then deduce that this solution of the Prouhet-Tarry-Escott problem [10] re-
quires r ≥ n, so that there are at least 2n non-zero coeffi cients. The latter can
directly be justified by showing that if r < n,

n∏
j=1

(x− aj) =

n∏
j=1

(x− bj)

and hence the {aj} , {bj} are identical, a contradiction.
There are problems with this proof that do not seem to have been addressed in

the literature. The identity (3.1) is simply not true for all n, as very often there
are coeffi cients other than ±1. For example,

4∏
j=1

(
1− zj

)
= 1− z − z2 + 2z5 − z8 − z9 + z10.

For the moment, let us ignore this problem and continue: write

Pn (z) =

n∏
j=1

(1− zsj ) =

N∑
k=0

akz
k.

If as asserted by Erdős-Szekeres, there are at least 2n non-zero coeffi cients, then

1

2π

∫ π

−π

∣∣Pn (eit)∣∣2 dt =

N∑
k=0

|ak|2 ≥ 2n,

so that

(3.2) ‖Pn‖ ≥
√

2n.

This bound can, however, be properly proved using a well known method: since
Pn has a zero of order n at 1, we have P (j)

n (1) = 0, for j = 0, 1, ..., n− 1, leading to
N∑
k=0

akk (k − 1) (k − 2) ... (k − j + 1) = 0, 0 ≤ j ≤ n− 1.

Since every polynomial S (x) of degree at most n − 1 can be expressed as a linear
combination of the polynomials ω0 (x) = 1 and ωj (x) = x (x− 1) ... (x− j + 1),
1 ≤ j ≤ n− 1, we obtain

N∑
k=0

akS (k) = 0

for every such S. As Pn is not identically 0, this forces at least n coeffi cients in Pn
not to be 0. So

1

2π

∫ π

−π

∣∣Pn (eit)∣∣2 dt =

N∑
k=0

|ak|2 ≥ n.

Since all zeros are on the unit circle, a result of O’Hara and Rodriguez [23, Corollary
1, p. 333] shows that

‖Pn‖2L∞(|z|=1) ≥ 2

N∑
k=0

|ak|2 ≥ 2n

so that indeed
f (n) ≥

√
2n.
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If the original Erdős-Szekeres proof could be fixed, the O’Hara Rodriguez bound
would give f (n) ≥ 2

√
n. We note that the O’Hara Rodriguez bound is a special

case of a bound of Saff and Sheil-Small [25].
We turn to the

Proof of Theorem 2.1
(a) We use the Poisson integral representation. Since log |Pn| is harmonic in the
unit disc, and integrable on the unit circle, we have for r < 1, θ ∈ [−π, π] ,

(3.3) log
∣∣Pn (reiθ)∣∣ =

1

2π

∫ π

−π

(
log
∣∣Pn (eit)∣∣)P (r, θ − t) dt.

Here P (r, t) is the Poisson kernel, satisfying for 0 < r < 1, t ∈ [−π, π] ,

(3.4) 0 ≤ P (r, t) =
1− r2

1− 2r cos t+ r2
≤ 2

1− r .

Next, with log+ x = max {0, log x} and log− x = −min {0, log x}, we have log x =
log+ x− log− x, so

log
1

|Pn (reiθ)| =
1

2π

∫ π

−π

(
log−

∣∣Pn (eit)∣∣− log+
∣∣Pn (eit)∣∣)P (r, θ − t) dt

≤ 1

2π

∫ π

−π

(
log−

∣∣Pn (eit)∣∣)P (r, θ − t) dt.

(3.5)

Next, from the identity ∫ π

−π
log
∣∣1− eit∣∣ dt = 0,

we obtain
1

2π

∫ π

−π
log
∣∣Pn (eit)∣∣ dt = 0

(3.6) ⇒ 1

2π

∫ π

−π
log−

∣∣Pn (eit)∣∣ dt =
1

2π

∫ π

−π
log+

∣∣Pn (eit)∣∣ dt.
Then (3.4-3.6) give for any 0 < r < 1,

(3.7) log
1

|Pn (r)| ≤
2

1− r
1

2π

∫ π

−π
log+

∣∣Pn (eit)∣∣ dt.
Now we choose r. First recall that for 0 < r < 1,

1− rsj
1− r =

sj−1∑
k=0

rk ≤ sj

⇒ log (1− rsj )−1 ≥ − log sj − log (1− r) .
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Since also all log (1− rsj )−1 ≥ 0, we can drop terms to obtain for 1 ≤ L ≤ n,

log
1

|Pn (r)| ≥
L∑
j=1

log (1− rsj )−1

≥ −

 L∑
j=1

log sj

− L log (1− r)

= −L {logML + log (1− r)} ,

where

ML = (s1s2...sL)
1/L

.

Then (3.7) gives

−L (1− r) {logML + log (1− r)} ≤ 2
1

2π

∫ π

−π
log+

∣∣Pn (eit)∣∣ dt.
By differentiation with respect to r, we find that the best choice of r is given by
1− r = 1

eML
. Then this last inequality gives

(3.8)
L

2eML
≤ 1

2π

∫ π

−π
log+

∣∣Pn (eit)∣∣ dt ≤ log ‖Pn‖ .

This yields (2.1).
(b) Here we use the arithmetic-geometric inequality/ Jensen’s inequality and a
result of Saff and Sheil-Small [25]:

1 +
1

2π

∫ π

−π

∣∣Pn (eit)∣∣p dt
≥ 1

2π

∫ π

−π
max

{
1,
∣∣Pn (eit)∣∣p} dt

=
1

2π

∫ π

−π
exp

(
p log+

∣∣Pn (eit)∣∣) dt
≥ exp

(
p

1

2π

∫ π

−π
log+

∣∣Pn (eit)∣∣ dt)
≥ exp

(
pL

2eML

)
,

by (3.8). So

(3.9)
1

2π

∫ π

−π

∣∣Pn (eit)∣∣p dt ≥ exp

(
pL

2eML

)
− 1.

Next, a result of Ed Saff and T. Sheil-Small [25, Theorem 1, p. 17] shows that

‖Pn‖p ≥
√
πΓ
(

1
2p+ 1

)
Γ
(

1
2p+ 1

2

) 1

2π

∫ π

−π

∣∣Pn (eit)∣∣p dt.
Combining this with (3.9) and taking pth roots gives (2.2). �
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4. Proof of Theorem 2.2 and Corollaries 2.3, 2.4

For t > 0, let

(4.1) µn (t) = meas
{
θ ∈ [−π, π] : log−

∣∣Pn (eiθ)∣∣ > t
}
,

denote the distribution function of log− |Pn|. Its usefulness is apparent from the
formula [24, p. 172]

(4.2)
∫ ∞

0

ptp−1µn (t) dt =

∫ π

−π

(
log−

∣∣Pn (eiθ)∣∣)p dθ, p > 0.

We can obtain estimates of µn from Cartan’s lemma on small values of polynomi-
als or Nazarov’s estimate for exponential sums, but these involve the size of {sn}.
Instead we use:

Lemma 4.1

(4.3) µn (t) ≤ πne−t/n, t > 0.

Proof
Let δ ∈ (0, 2n) and

Fj =
{
θ ∈ [−π, π] :

∣∣1− eisjθ∣∣ ≤ δ/n} =

{
θ ∈ [−π, π] :

∣∣∣∣sin sjθ2
∣∣∣∣ ≤ δ

2n

}
.

Here if k is the integer closest to sjθ
2π ,∣∣∣∣sin sjθ2

∣∣∣∣ =

∣∣∣∣sinπ(sjθ2π
− k
)∣∣∣∣ ≤ δ

2n

⇔ π

∣∣∣∣sjθ2π
− k
∣∣∣∣ ≤ arcsin

(
δ

2n

)
⇔ θ ∈

[
2kπ

sj
− 2

sj
arcsin

(
δ

2n

)
,

2kπ

sj
+

2

sj
arcsin

(
δ

2n

)]
.

So

Fj ⊂ [−π, π] ∩
⋃

|k|≤sj/2

[
2kπ

sj
− 2

sj
arcsin

(
δ

2n

)
,

2kπ

sj
+

2

sj
arcsin

(
δ

2n

)]

⇒ meas (Fj) ≤ (sj)
4

sj
arcsin

(
δ

2n

)
≤ π δ

n
,

by the inequality |arcsin v| ≤ π
2 |v|, v ∈ (−1, 1). Let

F =

n⋃
j=1

Fj

so that meas (F) ≤ πδ. Also if θ /∈ F ,

|Pn
(
eiθ
)
| >

(
δ

n

)n
.

Then if δ ∈ (0, n) ,

meas

{
θ ∈ [−π, π] : log |Pn

(
eiθ
)
|−1 > log

(
δ

n

)−n}
≤ meas (F) ≤ πδ.
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Note that necessarily
∣∣Pn (eiθ)∣∣ < 1 for such θ. Setting t = log

(
δ
n

)−n ⇔ δ =

ne−t/n, and noting that δ ∈ (0, n)⇐⇒ t ∈ (0,∞), we obtain (4.3). �
The classical Hausdorff-Young Inequality [24, p. 261], [28, p. 101, Thm. 12.2.3]

asserts that if 1 < p ≤ 2 and f ∈ Lp [−π, π], and has Fourier coeffi cients

fj =
1

2π

∫ π

−π
f (t) e−ijtdt, j ∈ Z,

then 
∞∑

j=−∞
|fj |p

′


1/p′

≤
{

1

2π

∫ π

−π

∣∣f (eit)∣∣p dt}1/p

,

where p′ = p
p−1 . Kellogg’s extension of the Hausdorff-Young inequality states that

[18, p.125, Theorem 3]

(4.4)


∞∑

k=−∞

∑
j∈Ik

|fj |p
′

2/p′


1/2

≤ Ap
{

1

2π

∫ π

−π

∣∣f (eit)∣∣p dt}1/p

,

where if k > 0, Ik =
{
j ∈ Z : 2k−1 ≤ j < 2k

}
while I−k = −Ik if k < 0, and

I0 = {0}. The constant Ap depends only on p. We let

(4.5) C0 =
1

2

(
2p/2App

)−1

.

We apply this to f = log |Pn|. Recall that `k denotes the number of sj in Ik for
k ≥ 1.

Lemma 4.2
(a)

(4.6) log
∣∣Pn (eiθ)∣∣ = −

∞∑
`=1

Λ`
`

cos `θ,

where

(4.7) Λ` =
∑
j:sj |`

sj .

(b) If 1 < p ≤ 2, and p′ = p
p−1 ,

(4.8) np−1 ≤
{ ∞∑
k=1

`
2/p′

k

}p/2
≤ (2C0)

−1 1

2π

∫ π

−π

∣∣log
∣∣Pn (eit)∣∣∣∣p dt.

(c) Either

(4.9)
1

2π

∫ π

−π

(
log+

∣∣Pn (eit)∣∣)p dt ≥ C0

{ ∞∑
k=1

`
2/p′

k

}p/2
or for n ≥ n0 (p) ,

(4.10)
∫ π

−π
log−

∣∣Pn (eit)∣∣ dt ≥ C1

(n log n)
p−1

{ ∞∑
k=1

`
2/p′

k

}p/2
.
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The threshhold n0 and the constant C1 depend only on p and not on n, {sj}.
Proof
(a) The Taylor series

log (1− z) = −
∞∑
k=1

zk

k
, |z| < 1,

gives for such z,

logPn (z) = −
n∑
j=1

∞∑
k=1

zksj

k
= −

∞∑
`=1

Λ`
`
z`,

where Λ` is given by (4.7). Also then, by taking real parts, we obtain the Fourier
series expansion (4.6). This converges uniformly in closed subarcs of the unit circle
omitting zeros of Pn as log |Pn| is differentiable in such arcs.
(b) Now (4.4) with f±` = 1

2
Λ`

` , ` ≥ 1 and f0 = 0, gives2

∞∑
k=1

∑
j∈Ik

(
Λj
2j

)p′2/p′


1/2

≤ Ap
{

1

2π

∫ π

−π

∣∣log
∣∣Pn (eit)∣∣∣∣p dt}1/p

.

(4.11)

Here as sj |sj ,
Λsj ≥ sj .

Then (4.11) gives

(4.12) 2C0

{ ∞∑
k=1

`
2/p′

k

}p/2
≤ 1

2π

∫ π

−π

∣∣log
∣∣Pn (eit)∣∣∣∣p dt.

This gives the rightmost inequality in (4.8). Recall we defined C0 by (4.5). Next,

∞∑
k=1

`k = n.

Since 2/p′ < 1, repeated use of (x+ y)
2/p′ ≤ x2/p′ + y2/p′ for x, y ≥ 0, gives

(4.13)
∞∑
k=1

`
2/p′

k ≥ n2/p′ .

Finally, p/p′ = p− 1, so we obtain the leftmost inequality in (4.8).
(c) As the functions log± have disjoint support, so
(4.14)
1

2π

∫ π

−π

∣∣log
∣∣Pn (eit)∣∣∣∣p dt =

1

2π

∫ π

−π

(
log+

∣∣Pn (eit)∣∣)p dt+ 1

2π

∫ π

−π

(
log−

∣∣Pn (eit)∣∣)p dt.
If (4.9) fails, then (4.12) shows that

(4.15) ≥ C0

{ ∞∑
k=1

`
2/p′

k

}p/2
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We now turn this into an estimate for 1
2π

∫ π
−π log−

∣∣Pn (eit)∣∣ dt. By Lemma 4.1,∫ ∞
(p+1)n logn

ptp−1µn (t) dt

≤ πn

∫ ∞
(p+1)n logn

ptp−1e−t/ndt

= πnp+1

∫ ∞
(p+1) logn

pyp−1e−ydy.

Integrating by parts, and using that p ≤ 2, we continue this as

= πnp+1

{
−pyp−1e−y|y=∞

y=(p+1) logn +

∫ ∞
(p+1) logn

p (p− 1) yp−2e−ydy

}
≤ πp ((p+ 1) log n)

p−1
+ πp (p− 1) ,

provided (p+ 1) log n ≥ 1. (This is true for n ≥ 2). Then from (4.2),∫ π

−π
log−

∣∣Pn (eit)∣∣ dt
=

∫ ∞
0

µn (t) dt

≥
∫ (p+1)n logn

0

ptp−1

p ((p+ 1)n log n)
p−1µn (t) dt

=
1

p ((p+ 1)n log n)
p−1

[∫ ∞
0

−
∫ ∞

(p+1)n logn

]
ptp−1µn (t) dt

≥ 1

p ((p+ 1)n log n)
p−1

2πC0

{ ∞∑
k=1

`
2/p′

k

}p/2
− πp ((p+ 1) log n)

p−1 − πp (p− 1)


by (4.15). In view of the leftmost inequality in (4.8), we obtain (4.10) for n ≥ n0 (p).
�

Proof of Theorem 2.2
If (4.9) is true, then recalling ε = 2

p (p− 1) = 2
p′ ,

(log ‖Pn‖)p ≥ C0

{ ∞∑
k=1

`εk

}p/2
.

Then as

(log ‖Pn‖)p−1 ≤ (log 2n)
p−1

= (n log 2)
εp/2

,

so

(4.16) log ‖Pn‖ ≥ C0

{∑∞
k=1 `

ε
k

(n log 2)
ε

}p/2
.
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This is a stronger estimate than (2.3). Now suppose (4.9) fails. From (3.6),

log ‖Pn‖L∞(|z|=1) ≥ 1

2π

∫ π

−π
log+

∣∣Pn (eit)∣∣ dt
=

1

2π

∫ π

−π
log−

∣∣Pn (eit)∣∣ dt
≥ C1

2π

1

(n log n)
p−1

{ ∞∑
k=1

`εk

}p/2

=
C1

2π

{ ∑∞
k=1 `

ε
k

(n log n)
ε

}p/2
,

by (4.10) and provided n ≥ n0 (p). This is easily reformulated as (2.3) for n ≥
n0 (p). For the integers n = 2, 3, ..., n0 (p)− 1,∑∞

k=1 `
ε
k

(n log n)
ε ≤

n

(log 2)
ε ≤

n0

(log 2)
ε

while the left-hand side exceeds log
√

2n ≥ log
√

2, so increasing the size of C gives
the inequality (2.3) for all n ≥ 2. �

Proof of Corollary 2.3
Here if all `k ≤ C1n

(logn)B
,

n =

∞∑
k=1

`k ≤
(

C1n

(log n)
B

)1−ε ∞∑
k=1

`εk.

So { ∑∞
k=1 `

ε
k

(n log n)
ε

}p/2
≥
(
C
−(1−ε)
1 (log n)

B(1−ε)−ε
)p/2

.

Here,

[B (1− ε)− ε] p
2
> 1⇔ B >

2p

2− p .

If B > 2, then we can choose p close enough to 1 so that this last inequality is
satisfied. Together with (2.3), this gives for some δ > 0,

‖Pn‖ ≥ exp
(
C (log n)

1+δ
)
.

�

Remark
The same conclusion holds if we can find m different {Iki} such that Iki contains
`ki of the {sj}, where each `ki ≤ Cn/ (log n)

B and for some fixed ρ ∈ (0, 1),

m∑
i=1

`ki ≥ ρn.

Proof of Corollary 2.4
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If at least nτ of the {Ik} contain some sj , so that at least nτ of the `k ≥ 1, we then
have ∑∞

k=1 `
ε
k

(n log n)
ε ≥ nτ−ε (log n)

−ε

which will grow like a power of n if ε is small enough. �
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[13] P. Erdős, Problems and Results on Diophantine Approximation, Compositio Mathematica,

16(1964), 52-66.
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