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Plan of the talk

Introduction to the Arnold cat map as a chaotic dynamical system.

The calculation of an invariant manifold using a local perturbation.

Meaning of an invariant measure.

How big does it get?
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Cat Map

Consider any point ψ in the unit square. Now apply the mapping S0ψ, where

S0 ≡
(

1 1
1 0

)
.

This would then look like

S(ψ) =

(
ψ1 + ψ2

ψ1

)
.

Consider this map’s indefinite iteration. Clearly this would leave the unit square domain
quickly, so we define it on the 2-torus

T2 ≡ R2/2πZ2,

which would give us

S(ψ) =

(
ψ1 + ψ2

ψ1

)
mod 2π.

This map is well-defined, and similar maps are commonly referred to as Arnolds cat
map, named after the first illustrative example generated by Arnold. In his study, he
applied the mapping to an image of a cat to demonstrate chaotic dynamics.
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Hyperbolic Dynamical Systems

Consider iterations as time, such that the Nth iteration serves as the state of the
system at t = N. Eigenvector analysis of the transformation demonstrates the
hyperbolicity of the system. We call v+, v− the two normalized eigenvectors relative to
the eigenvalues 1±

√
5

2 . We also express λ+ and λ− in terms of λ =
√

5−1
2 , the inverse of

the maximum eigenvalue of S0 as follows,

λ+ =
1
λ

, λ− = −λ. (1)

Hyperbolic dynamical systems are characterized by their possession of both a stable
and unstable dimension in phase space. Due to a useful characteristic of hyperbolic
systems, this analysis can be transferred to the study of local behavior of nonlinear
systems where the stable and unstable subspaces are replaced by local stable and
unstable manifolds.
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Arnold Cat As a Dynamical System

Now, what happens when we introduce a local perturbation? We can say

Sε(ψ) =

((
ψ1 + ψ2

ψ1

)
+ ε

(
f1(ψ1, ψ2)
f2(ψ1, ψ2)

))
mod 2π

so that we can study the perturbation

Sεϕ = S0ϕ− εf(ϕ).

When we perturb a system, we take a system in dynamic equilibrium and push it a bit
in some arbitrary direction. We then analyze what effects this small variation of order ε
has. Doing so, and utilizing Taylor’s Theorem to form series representations of each
function gives rise to the work I have completed this summer.
It is important to note that f is a real-valued trigonometric polynomial given by

f(ϕ) =
∑
ν∈Z2

eiν·ϕfν

such that |ν| ≤ N.
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Understanding the Order.

To perform this, we again write out the expansion of h(ψ), followed by S0h(ψ), h(S0ψ),
and εf(ψ + h(ψ)). We have

h(ψ) = εh(1)(ψ) + ε2h(2)(ψ) + · · ·+ εih(i)(ψ) + · · · ,

S0h(ψ) = εS0h(1)(ψ) + ε2S0h(2)(ψ) + · · ·+ εiS0h(i)(ψ) + · · · ,

and
h(S0ψ) = εh(1)(S0ψ) + ε2h(2)(S0ψ) + · · ·+ εih(i)(S0ψ) + · · · .

Now it is time to construct a power series expansion for f. Doing so, we find that

f(ψ + h(ψ)) = f(ψ) + ε

(
∂ψ1 f1(ψ) ∂ψ2 f1(ψ)
∂ψ1 f2(ψ) ∂ψ2 f2(ψ)

)
h(ψ) + · · ·+ εi

i!
∂
(i−1)
ψ f h(ψ) + · · · .

It is important to notice the vertical column of arbitrary terms formed by these
expansions. If we take every term with an ε out front, it is clear where each order’s
expression comes from.
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Why Periodic Boundary Conditions?

It turns out that the modulus operator is the entity actually manifesting the chaotic
nature of this system. The ’wrapping around’ as the system evolves generates the
ferocious mixing. For an unperturbed Arnold cat map, (nearly) any initial trajectory
densely fills the phase space. This divergence from near trajectories in time is
described by the lyupanov exponents of the system, and is the defining factor of the
dynamical chaos.
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How Could This Invariant Manifold Be Computed?

Let us begin by considering the existence of a function H : T2 −→ T2 such that
H ◦ S0 = Sε ◦ H. We write

H(ψ) = ψ + h(ψ).

Rearranging our definition of H shows us that Sε = H ◦ S0 ◦ H−1, so we see

Sn
ε = H ◦ Sn

0 ◦ H−1

Because of the local product structure
We want an exact expression for the attractor that this map collapses onto, in terms of
only the initial functions and characteristic parameters of the map. If we look closely at
the perturbation and rearrange it a little bit, our first order of epsilon relation looks like
this:

S0h(1)(ψ)− h(1)(S0ψ) = f(ψ) (2)

Recall that it is convenient (and equally valid) when manipulating this local perturbation
to work in the basis of the eigenvectors of the transformation S0. This brings us to

λ+h(1)
+ (ψ)− h(1)

+ (S0ψ) = f+(ψ), (3)

λ−h(1)
− (ψ)− h(1)

− (S0ψ) = f−(ψ). (4)
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Analytic Solutions at the 1st Order

To solve equation (2), we must get creative. We replace the RHS of (2) with a general
function, as follows. Let

λ+h(k)
+ (ψ)− h(k)

+ (S0ψ) = Ω(ψ), (5)

or
h(k)
+ (ψ) = λ−1

+ h(k)
+ (S0ψ) + λ−1

+ Ω(ψ),

where k ∈ N, and Ω is a function of k − 1 orders of h+, f+, and its derivatives. It is
important to note here that because this transformation is an automorphism, we can
apply S0ψ −→ ψ to (2) to make another progressive step towards the analytic solution.

After repeating this process multiple times, it is possible to write a series representation
of the solution based on generating each consecutive power of S0, giving us

h(k)
+ (ψ) =

∞∑
n=0

λ
−(n+1)
+ Ω(Sn

0ψ). (6)

In this case, our expression becomes

h(1)
+ (ψ) =

∞∑
n=0

λ
−(n+1)
+ f+(Sn

0ψ). (7)

The solution to (3) is strikingly similar, the only differences are the powers of lambda
and S0 inside the function. We now must assure ourselves that this series converges.
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Convergence

As we assess convergence of this series, we call the RHS of (7) Γ. We note that since f
is a trigonometric polynomial, for some arbitrary argument ϕ, we know that

|Γ(ϕ)| ≤ F+,

where
F+ ≡ ‖f+‖∞ = sup Γ,

Thus we can see that the sum h(1)
+ must be bounded by the product of F+ and

(
1

1−λ+

)
,

implying convergence.

This same line of thinking can hopefully reassure the audience that every order
converges, as each order is only written in terms of previous orders of h, a prefactor of
λ+, and f and its derivatives (which are also bounded).
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Higher Order Computation

For the second order (after changing the basis), we get the h(2)
+ relation to be

λ+h(2)
+ (ψ)− h(2)

+ (S0ψ) = ∂+f+(ψ)h(1)
+ (ψ) + ∂−f+(ψ)h(1)

− (ψ), (8)

a tad bit more daunting than the first order. Not to worry, we already have the solution
with (5)! This gives us

h(2)
+ (ψ) =

∞∑
n,m=0

λ
−(n+m+2)
+ ∂+f+(Sn

0ψ)f+(S(m+n)
0 ψ))

−
∞∑

n,m=0

λ
−(1+n+m)
+ ∂−f+(Sn

0ψ)f−(S(n−m−1)
0 ψ)),

Now let us have a look at the 3rd order...
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3rd Order Solution

After a nontrivial exercise in algebra, the final expression for h(3)
+ is given by

h(3)
+ (ψ) =

∞∑
n,m,k=0

λ
−(n+m+k+3)
+ ∂+f+(Sk

0ψ) ∂+f+(S(n+k)
0 ψ) f+(S(n+m+k)

0 ψ)

+
∞∑

n,m,k=0

λ
−(n+m−k+2)
+ ∂+f+(Sk

0ψ) ∂−f+(S(n+k)
0 ψ) f−(S(n+m+k−1)

0 ψ)

+
∞∑

n,m,k=0

λ
−(n+m+k+2)
+ ∂−f+(Sk

0ψ) ∂+f−(S(n+k)
0 ψ)f+(S(m+k)

0 ψ)

+
∞∑

n,m,k=0

λ
−(n+m+k+1)
+ ∂−f+(Sk

0ψ) ∂−f−(S−(n−k+1)
0 ψ)f−(S−(m−k+1)

0 ψ)

+
1
2

∞∑
n,k=0

(
λ
−(n+k+2)
+ f+(S(n+k)

0 ψ)
)2
∂2
+f+(Sk

0ψ)

−
∞∑

n,k=0

λ
−(2n+k+2)
+ f+(S(n+k)

0 ψ) f−(S−(n−k+1)
0 ψ)∂+∂−f+(Sk

0ψ)

+
1
2

∞∑
n,k=0

(
λ
−(n+k+1)
+ f−(S−(n−k+1)

0 ψ)
)2
∂2
−f+(Sk

0ψ). (9)
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Invariant Measures

We have analytically determined what we could easily numerically see, but seemed
very out of reach initially. Better yet, we are able to determine exactly the invariant
manifold that the system collapses onto as ε grows, in terms of no more than the
starting information. We have the ability to use the lovely framework of measure theory
to generalize our study of the chaotic dynamics.

If we think about this unit square as a probability space rather than a physical space,
we can reach powerful new information about the system. The transformation is in fact
measureable, so we define a measure µ on the measure space (T2,B,λ).

An invariant measure is defined to be a measure µ on (T2,B,λ) such that for a
measureable function f : T2 −→ T2 and any set A ⊆ T2

µ
(

f−1(A)
)

= µ(A)

Because this is a volume-preserving anosov diffeomorphism (even under small
perturbation), many invariant measures exist!
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Conclusions

The main takeaways from my work this summer are the following:

The notion of a Arnold cat map as a dynamical system

The use of perturbation theory to help with intense computation (such as
determining the attractor manifold)

The convergence of my analytic solution and its generality

The prevelance of invariant measures in dynamical systems, and the importance
of my future constructive study of coupled Arnold cat maps
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The End

Thank You
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