Introduction

Let $T^2 = \mathbb{R}^2 / 2\pi\mathbb{Z}^2$ be the two-dimensional torus. The map $S : T^2 \to T^2$ defined as $S(v) = S_0 + f(v) \mod 2\pi$, where $S_0 = \left(\frac{1}{2}, \frac{1}{2}\right)$, is called Arnold’s Kitten Map. The matrix S has eigenvalues $\lambda_\pm = \pm 2\sqrt{\epsilon}$, S is an elementary example of an Anosov Diffeomorphism. A precise definition is given in [Mathematical Equations].

Main Goal

It is well known that the unstable set under an Anosov diffeomorphism $f : M \to M$ given by $W^u(f) = \{y \in M : dF^n f^{-n}(y) \to 0 \text{ as } n \to \infty\}$ is a manifold whose regularity is as high as that of f. However, it is very hard to get a description of its tangent space. We will give an explicit characterization of the tangent bundle of the stable set S under a small perturbation.

Perturbation of Arnold’s Cat Map, Conjugation

We consider a small perturbation S of S_0 on T^2 given by $S_0(v) = S_0(v) - f(v) \mod 2\pi$, where f is a trigonometric polynomial. Then, there exists a unique homeomorphism H, analytic in ϵ, such that $H(0) = S_0$, and H^ϵ is on T^2. An expression for H can be found in [Mathematical Equations].

Conclusions

Even though the derivative of H_ϵ does not exist, there is most likely still a way to find the vector field of the unstable manifold of S. The above result was derived by dividing the derivative of H_ϵ by its length, expressing the values in terms of trees, and then seeing that the values of those trees “cancel out”.

Acknowledgements

This project was supported by the NSF grant 2244427 and the Gatech College of Sciences. We would like to thank our mentor, Dr. Federico Bonetto, for supporting us and providing us with valuable advice throughout the REU. We would also like to thank Aaf Katz for providing us with some guidance about the three-dimensional case.

References

Further Directions

- For the 3d case, we look at the matrix $S_0 = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$
- The matrix S_0 has three eigenvalues, 2 of which are greater than 1, and one whose absolute value is less than 1. The equation for H_ϵ is entirely similar to the 2d case (See: Mathematical Equations).
- However, the cancellation is much more complicated, and our methods do not work as well.