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Divisors on chains of loops

Given a graph G, a metric graph is the metric space
obtained by assigning to each edge of G a closed interval
and gluing any two of these intervals together at their
endpoints just if their corresponding edges meet at that
vertex.

A chain of loops is a metric graph Γ consisting of cycles
connected together by bridges. The number of cycles (or
equivalently, the genus) is denoted by g.
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Divisors on chains of loops

Figure: A chain of 3 loops

Steven Creech, Caelan Ritter, Derek Wu Prym varieties of folded k-gonal chains of loops



Divisors on chains of loops

The torsion of a loop is the ratio of the length of the loop
to the length of its bottom arc.

The chain of loops has gonality k if all of its loops have
torsion k.

Without loss of generality, let the bottom arc of each loop
have length 1.
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Divisors on chains of loops
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Figure: A k-gonal chain of 3 loops
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Divisors on chains of loops

A divisor (or chip configuration) D on Γ is an element of
the free abelian group on the set of points of Γ.

The degree d of a divisor D is the sum of the chips in D.
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Divisors on chains of loops

Figure: A divisor of degree 4 on the chain of 2 loops
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Divisors on chains of loops
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Figure: A divisor of degree 4 on the chain of 2 loops
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Divisors on chains of loops

A chip-firing move is a movement of chips in D such that
the “net momentum” on each cycle in Γ is zero.

Chip-firing defines an equivalence relation: two divisors D
and D′ are equivalent just if there exists a series of
chip-firing moves that takes D to D′.
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Divisors on chains of loops
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Figure: Examples of valid chip-firing moves given a divisor of degree 4
on a chain of 2 loops.
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Figure: Examples of valid chip-firing moves given a divisor of degree 4
on a chain of 2 loops.
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Divisors on chains of loops

Every divisor class has a unique representative for which
each loop has exactly one chip, except possibly one loop
which contains a fixed point v, on which there are an
additional d− g chips.

The space of equivalence classes of divisors of a fixed
degree d has the structure of a g-dimensional torus.

An effective divisor is one which is nonnegative at every
point in Γ.

The rank of a divisor r(D) is the largest nonnegative
integer r such that D − E is equivalent to an effective
divisor for all effective divisors E of degree r. If no such r
exists, then the divisor has rank -1.

Brill-Noether theory classifies the divisors on a metric
graph of degree d and rank at least r.
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Motivation

We obtain chains of loops from certain Riemann surfaces
via a process known as tropicalization.

Divisors on tropical varieties (such as metric graphs) are
analogous to divisors on algebraic varieties.

Divisor classes of rank r on an algebraic curve C are in
bijection with maps C → Pr up to change of coordinates.

Certain results proved here in the tropical case have
implications in the algebraic case.
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Prym divisors on folded chains of loops

A double cover of metric spaces π : Γ̃→ Γ is a local
isometry such that the preimage of each point in Γ contains
exactly two points.

We are interested in a specific double cover of the chain of
loops called the folded chain of loops.
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Prym divisors on folded chains of loops
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Figure: The folded k-gonal chain of 4 loops
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Prym divisors on folded chains of loops

The map π induces a map π∗ on divisor classes.

A Prym divisor is a divisor (class) on Γ̃ that maps down to
KΓ.

The canonical divisor KΓ contains val(v)− 2 chips at each
point v ∈ Γ.

1 1 1 1

The Prym variety—the space of all classes of Prym
divisors—has the structure of two disjoint copies of the
(g − 1)-dimensional torus.
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Prym divisors on folded chains of loops

The Prym–Brill–Noether locus for some fixed r, denoted
V r, is the set of Prym divisors that satisfy the following
conditions:

r(D̃) ≥ r,
r(D̃) ≡ r (mod 2)

V −1 and V 0 constitute the two disjoint copies of
(g − 1)-dimensional tori, and contain the odd- and
even-ranked divisors, respectively.
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Prym tableaux

A Prym tableau for a given rank r is a square grid of length
r + 1 where each cell in the grid is filled out with the first
2g − 1 integers, called symbols.

We can index through the tableau by diagonals modulo k:
For a given symbol n with torsion k, the i-th diagonal is all
cells (x, y) such that x− y ≡ i (mod k).

The standard condition: every row and column must be
strictly increasing.
The displacement condition: If symbol n repeats in the
tableau, then all repeats must be in the same diagonal mod
k.
The Prym condition: If symbols n and 2g − n both appear
in the tableau, they must be in the same diagonal mod k.
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Prym tableaux

If k is large enough such that no symbol is allowed to
repeat, then the tableaux is called generic.

To go from Prym tableaux to Prym divisor:

For symbols less than g, measure distance i
counterclockwise from the left bridge.
For symbols greater than g, measure distance i clockwise
from the right bridge.
For g, if x− y is even, then it goes on the top vertex,
otherwise it goes on the bottom vertex
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Prym tableaux

7 9 10 13

5 7 8 12

4 6 7 9

1 2 5 7

1

-1+1
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Prym tableaux
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Prym tableaux

The correspondence between Prym tableaux and sets of
Prym divisors is not in general one-to-one: several different
tableaux can yield the same set of divisor classes.

A Prym tableaux is reflective if, whenever the cell (x, y)
contains the symbol n, the cell (r + 2− y, r + 2− x)
contains the symbol 2g − n.

5

4 6

1 2 5
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Dimension

The dimension is already known in the generic case and
when k is even.

Combining our result for k odd with previous results by
Len and Ulrisch (2019) in the even and generic cases, we
obtain the following theorem:

Theorem

dim(V r) = g − 1− n, where

n =

{(
r+1

2

)
if r ≤ l(

l+1
2

)
+ l(r − l) if r > l

, (1)

and where l =
⌈
k
2

⌉
.
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Tropological Results

Theorem

V r is pure-dimensional.

Theorem

If dim(V r) > 0, then V r is path-connected.
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Enumerating dimension 0

In the generic case, we can use the well-known hook-length
formula.

When k is even, we can create a bijection with a lattice
path enumeration problem.

The cardinality is still unknown for k odd.

Steven Creech, Caelan Ritter, Derek Wu Prym varieties of folded k-gonal chains of loops



Enumerating dimension 0

In the generic case, we can use the well-known hook-length
formula.

When k is even, we can create a bijection with a lattice
path enumeration problem.

The cardinality is still unknown for k odd.

Steven Creech, Caelan Ritter, Derek Wu Prym varieties of folded k-gonal chains of loops



Enumerating dimension 0

In the generic case, we can use the well-known hook-length
formula.

When k is even, we can create a bijection with a lattice
path enumeration problem.

The cardinality is still unknown for k odd.

Steven Creech, Caelan Ritter, Derek Wu Prym varieties of folded k-gonal chains of loops



1-dimensional loci

Every 1-dimensional locus is a collection of circles wedged
together in some way.

Theorem

When dim(V r(π)) = 1, the rank of the first homology of V r(π)
is: 

rfλ((r+1
2 )+1)
2 + 1 k > 2r − 2

r + 1 k = 2

2r−1(3r − 2) + 1 k = 4

It is unknown for other values of k.
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Future work

Continue computing homology groups.

Study tropological properties of V r for different covering
maps (snake of loops, tree of loops, etc.)

Strengthen the connection to Prym divisors on algebraic
varieties.
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End

Thank you!
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