Prym varieties of folded k-gonal chains of loops

Steven Creech, Caelan Ritter, Derek Wu

Georgia Institute of Technology

YMC
9 August 2019
Divisors on chains of loops

- Given a graph G, a *metric graph* is the metric space obtained by assigning to each edge of G a closed interval and gluing any two of these intervals together at their endpoints just if their corresponding edges meet at that vertex.
Divisors on chains of loops

- Given a graph G, a metric graph is the metric space obtained by assigning to each edge of G a closed interval and gluing any two of these intervals together at their endpoints just if their corresponding edges meet at that vertex.

- A chain of loops is a metric graph Γ consisting of cycles connected together by bridges. The number of cycles (or equivalently, the genus) is denoted by g.
Divisors on chains of loops

Figure: A chain of 3 loops
Divisors on chains of loops

- The *torsion* of a loop is the ratio of the length of the loop to the length of its bottom arc.
The torsion of a loop is the ratio of the length of the loop to the length of its bottom arc.

The chain of loops has gonality \(k \) if all of its loops have torsion \(k \).
Divisors on chains of loops

- The *torsion* of a loop is the ratio of the length of the loop to the length of its bottom arc.
- The chain of loops has *gonality* k if all of its loops have torsion k.
- Without loss of generality, let the bottom arc of each loop have length 1.
Divisors on chains of loops

Figure: A k-gonal chain of 3 loops
Divisors on chains of loops

- A divisor (or chip configuration) D on Γ is an element of the free abelian group on the set of points of Γ.
Divisors on chains of loops

- A *divisor* (or *chip configuration*) D on Γ is an element of the free abelian group on the set of points of Γ.
- The *degree* d of a divisor D is the sum of the chips in D.
Divisors on chains of loops

Figure: A divisor of degree 4 on the chain of 2 loops
Divisors on chains of loops

Figure: A divisor of degree 4 on the chain of 2 loops
A chip-firing move is a movement of chips in D such that the “net momentum” on each cycle in Γ is zero.
Divisors on chains of loops

- A *chip-firing move* is a movement of chips in D such that the “net momentum” on each cycle in Γ is zero.
- Chip-firing defines an equivalence relation: two divisors D and D' are equivalent just if there exists a series of chip-firing moves that takes D to D'.
Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Divisors on chains of loops

Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Divisors on chains of loops

Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Divisors on chains of loops

Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Figure: Examples of valid chip-firing moves given a divisor of degree 4 on a chain of 2 loops.
Divisors on chains of loops

Every divisor class has a unique representative for which each loop has exactly one chip, except possibly one loop which contains a fixed point \(v \), on which there are an additional \(d - g \) chips.
Divisors on chains of loops

- Every divisor class has a unique representative for which each loop has exactly one chip, except possibly one loop which contains a fixed point v, on which there are an additional $d - g$ chips.
- The space of equivalence classes of divisors of a fixed degree d has the structure of a g-dimensional torus.

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Divisors on chains of loops

- Every divisor class has a unique representative for which each loop has exactly one chip, except possibly one loop which contains a fixed point v, on which there are an additional $d - g$ chips.

- The space of equivalence classes of divisors of a fixed degree d has the structure of a g-dimensional torus.

- An effective divisor is one which is nonnegative at every point in Γ.

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Divisors on chains of loops

- Every divisor class has a unique representative for which each loop has exactly one chip, except possibly one loop which contains a fixed point \(v \), on which there are an additional \(d - g \) chips.
- The space of equivalence classes of divisors of a fixed degree \(d \) has the structure of a \(g \)-dimensional torus.
- An effective divisor is one which is nonnegative at every point in \(\Gamma \).
- The rank of a divisor \(r(D) \) is the largest nonnegative integer \(r \) such that \(D - E \) is equivalent to an effective divisor for all effective divisors \(E \) of degree \(r \). If no such \(r \) exists, then the divisor has rank -1.
Divisors on chains of loops

- Every divisor class has a unique representative for which each loop has exactly one chip, except possibly one loop which contains a fixed point v, on which there are an additional $d - g$ chips.
- The space of equivalence classes of divisors of a fixed degree d has the structure of a g-dimensional torus.
- An effective divisor is one which is nonnegative at every point in Γ.
- The rank of a divisor $r(D)$ is the largest nonnegative integer r such that $D - E$ is equivalent to an effective divisor for all effective divisors E of degree r. If no such r exists, then the divisor has rank -1.
- Brill-Noether theory classifies the divisors on a metric graph of degree d and rank at least r.

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Motivation

- We obtain chains of loops from certain Riemann surfaces via a process known as *tropicalization*.
Motivation

- We obtain chains of loops from certain Riemann surfaces via a process known as tropicalization.
- Divisors on tropical varieties (such as metric graphs) are analogous to divisors on algebraic varieties.

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Motivation

- We obtain chains of loops from certain Riemann surfaces via a process known as tropicalization.
- Divisors on tropical varieties (such as metric graphs) are analogous to divisors on algebraic varieties.
- Divisor classes of rank r on an algebraic curve C are in bijection with maps $C \to \mathbb{P}^r$ up to change of coordinates.
Motivation

- We obtain chains of loops from certain Riemann surfaces via a process known as *tropicalization*.
- Divisors on tropical varieties (such as metric graphs) are analogous to divisors on algebraic varieties.
- Divisor classes of rank r on an algebraic curve C are in bijection with maps $C \to \mathbb{P}^r$ up to change of coordinates.
- Certain results proved here in the tropical case have implications in the algebraic case.
Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Rank

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Rank

\[\cdots \quad 1 \quad 1 \cdots \]
Prym varieties of folded k-gonal chains of loops
Rank

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
A double cover of metric spaces $\pi: \tilde{\Gamma} \to \Gamma$ is a local isometry such that the preimage of each point in Γ contains exactly two points.

Prym divisors on folded chains of loops
Prym divisors on folded chains of loops

- A *double cover* of metric spaces \(\pi : \tilde{\Gamma} \to \Gamma \) is a local isometry such that the preimage of each point in \(\Gamma \) contains exactly two points.

- We are interested in a specific double cover of the chain of loops called the *folded chain of loops*.
Prym divisors on folded chains of loops

Figure: The folded k-gonal chain of 4 loops
Prym divisors on folded chains of loops

Figure: The folded k-gonal chain of 4 loops
The map π induces a map π_* on divisor classes.
Prym divisors on folded chains of loops

- The map π induces a map π_* on divisor classes.
- A Prym divisor is a divisor (class) on $\tilde{\Gamma}$ that maps down to K_Γ.
Prym divisors on folded chains of loops

- The map π induces a map π_* on divisor classes.
- A Prym divisor is a divisor (class) on $\tilde{\Gamma}$ that maps down to K_Γ.
- The *canonical divisor* K_Γ contains $\text{val}(v) - 2$ chips at each point $v \in \Gamma$.
The map π induces a map π_* on divisor classes.

A Prym divisor is a divisor (class) on $\tilde{\Gamma}$ that maps down to K_Γ.

The canonical divisor K_Γ contains $\text{val}(v) - 2$ chips at each point $v \in \Gamma$.

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
The map π induces a map π_* on divisor classes.

A Prym divisor is a divisor (class) on $\tilde{\Gamma}$ that maps down to K_Γ.

The canonical divisor K_Γ contains $\text{val}(v) - 2$ chips at each point $v \in \Gamma$.

The Prym variety—the space of all classes of Prym divisors—has the structure of two disjoint copies of the $(g - 1)$-dimensional torus.
The *Prym–Brill–Noether locus* for some fixed r, denoted V^r, is the set of Prym divisors that satisfy the following conditions:
The Prym–Brill–Noether locus for some fixed r, denoted V^r, is the set of Prym divisors that satisfy the following conditions:
- $r(\tilde{D}) \geq r$,
The *Prym–Brill–Noether locus* for some fixed r, denoted V^r, is the set of Prym divisors that satisfy the following conditions:
- $r(\tilde{D}) \geq r$,
- $r(\tilde{D}) \equiv r \pmod{2}$
The Prym–Brill–Noether locus for some fixed r, denoted V^r, is the set of Prym divisors that satisfy the following conditions:
- $r(\tilde{D}) \geq r$,
- $r(\tilde{D}) \equiv r \pmod{2}$

V^{-1} and V^0 constitute the two disjoint copies of $(g - 1)$-dimensional tori, and contain the odd- and even-ranked divisors, respectively.
Prym divisors on folded chains of loops

\[\tilde{\gamma}_7 \quad \tilde{\gamma}_6 \quad \tilde{\gamma}_5 \quad \tilde{\gamma}_4 \]

\[\gamma_1 \quad \gamma_2 \quad \gamma_3 \quad \gamma_4 \]

\[\tilde{\Gamma} \quad \Gamma \]

Stein Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Prym divisors on folded chains of loops

\[\tilde{\gamma}_1 \rightarrow \tilde{\gamma}_2 \rightarrow \tilde{\gamma}_3 \rightarrow \tilde{\gamma}_4 \]

\[\gamma_1 \rightarrow \gamma_2 \rightarrow \gamma_3 \rightarrow \gamma_4 \]
Prym divisors on folded chains of loops

\[\gamma_1 \quad \gamma_2 \quad \gamma_3 \quad \gamma_4 \]

\[\tilde{\gamma}_1 \quad \tilde{\gamma}_2 \quad \tilde{\gamma}_3 \quad \tilde{\gamma}_4 \]

\[\gamma_7 \quad \gamma_6 \quad \gamma_5 \quad \gamma_4 \]

\[\tilde{\Gamma} \]

\[\Gamma \]

\[\pi \]

-1

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded \(k \)-gonal chains of loops
Prym divisors on folded chains of loops
Prym divisors on folded chains of loops

\[\tilde{\gamma}_1 \to \tilde{\gamma}_2 \to \tilde{\gamma}_3 \to \tilde{\gamma}_4 \]

\[\gamma_1 \to \gamma_2 \to \gamma_3 \to \gamma_4 \]

\[\Gamma \leftarrow \tilde{\Gamma} \]

\[\pi \]

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded \(k \)-gonal chains of loops
Prym divisors on folded chains of loops

\[\gamma_1 \rightarrow \gamma_2 \rightarrow \gamma_3 \rightarrow \gamma_4 \rightarrow \tilde{\gamma}_4 \rightarrow \tilde{\gamma}_5 \rightarrow \tilde{\gamma}_6 \rightarrow \tilde{\gamma}_7 \rightarrow \gamma_1 \]

\[\Gamma \rightarrow \Gamma \rightarrow \Gamma \rightarrow \tilde{\Gamma} \rightarrow \tilde{\Gamma} \rightarrow \tilde{\Gamma} \rightarrow \pi \rightarrow \pi \rightarrow \pi \]

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded \(k \)-gonal chains of loops
Prym divisors on folded chains of loops
Prym divisors on folded chains of loops

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded \(k \)-gonal chains of loops
Prym divisors on folded chains of loops
Prym divisors on folded chains of loops

\[\tilde{\gamma}_1 \quad \tilde{\gamma}_2 \quad \tilde{\gamma}_3 \quad \tilde{\gamma}_4 \quad \tilde{\gamma}_5 \quad \tilde{\gamma}_6 \quad \tilde{\gamma}_7 \]

\[\gamma_1 \quad \gamma_2 \quad \gamma_3 \quad \gamma_4 \quad \gamma_5 \quad \gamma_6 \quad \gamma_7 \]

\[\pi \quad \Gamma \quad \tilde{\Gamma} \]

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded \(k \)-gonal chains of loops
Prym divisors on folded chains of loops

Steven Creech, Caelan Ritter, Derek Wu
Prym varieties of folded k-gonal chains of loops
Prym divisors on folded chains of loops

\[
\begin{array}{c}
\gamma_1 \quad \gamma_2 \quad \gamma_3 \\
\gamma_7 \quad \gamma_6 \quad \gamma_5 \\
\gamma_1 \quad \gamma_2 \quad \gamma_3 \quad \gamma_4
\end{array}
\]
Prym divisors on folded chains of loops

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
Prym divisors on folded chains of loops

\[\tilde{\gamma}_1 \rightarrow 1 \rightarrow \tilde{\gamma}_2 \rightarrow \tilde{\gamma}_3 \rightarrow 1 \rightarrow \Gamma \]

\[\gamma_1 \rightarrow 1 \rightarrow \gamma_2 \rightarrow \gamma_3 \rightarrow \gamma_4 \rightarrow \Gamma \]

\[\gamma_5 \rightarrow \tilde{\gamma}_5 \rightarrow \tilde{\gamma}_6 \rightarrow \tilde{\gamma}_7 \rightarrow \tilde{\gamma}_1 \]

\[\pi \]

Steven Creech, Caelan Ritter, Derek Wu
Prym divisors on folded chains of loops

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
A *Prym tableau* for a given rank r is a square grid of length $r + 1$ where each cell in the grid is filled out with the first $2g - 1$ integers, called *symbols*.

- The standard condition: every row and column must be strictly increasing.
- The displacement condition: If symbol n repeats in the tableau, then all repeats must be in the same diagonal mod k.
- The Prym condition: If symbols n and $2g - n$ both appear in the tableau, they must be in the same diagonal mod k.

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
A Prym tableau for a given rank r is a square grid of length $r + 1$ where each cell in the grid is filled out with the first $2g - 1$ integers, called symbols.

We can index through the tableau by diagonals modulo k: For a given symbol n with torsion k, the i-th diagonal is all cells (x, y) such that $x - y \equiv i \pmod{k}$.
Prym tableaux

- A *Prym tableau* for a given rank r is a square grid of length $r + 1$ where each cell in the grid is filled out with the first $2g - 1$ integers, called *symbols*.

- We can index through the tableau by diagonals modulo k: For a given symbol n with torsion k, the i-th diagonal is all cells (x, y) such that $x - y \equiv i \pmod{k}$.
 - The *standard condition*: every row and column must be strictly increasing.
 - The *Prym condition*: if symbols n and $2g - n$ both appear in the tableau, they must be in the same diagonal modulo k.
Prym tableaux

- A Prym tableau for a given rank r is a square grid of length $r + 1$ where each cell in the grid is filled out with the first $2g - 1$ integers, called symbols.

- We can index through the tableau by diagonals modulo k: For a given symbol n with torsion k, the i-th diagonal is all cells (x, y) such that $x - y \equiv i \pmod{k}$.
 - The standard condition: every row and column must be strictly increasing.
 - The displacement condition: If symbol n repeats in the tableau, then all repeats must be in the same diagonal mod k.
Prym tableaux

- A *Prym tableau* for a given rank r is a square grid of length $r + 1$ where each cell in the grid is filled out with the first $2g - 1$ integers, called *symbols*.

- We can index through the tableau by diagonals modulo k: For a given symbol n with torsion k, the i-th diagonal is all cells (x, y) such that $x - y \equiv i \pmod{k}$.
 - The *standard condition*: every row and column must be strictly increasing.
 - The *displacement condition*: If symbol n repeats in the tableau, then all repeats must be in the same diagonal mod k.
 - The *Prym condition*: If symbols n and $2g - n$ both appear in the tableau, they must be in the same diagonal mod k.

Steven Creech, Caelan Ritter, Derek Wu
Prym varieties of folded k-gonal chains of loops
If k is large enough such that no symbol is allowed to repeat, then the tableaux is called *generic*.

To go from Prym tableaux to Prym divisor:
Prym tableaux

- If k is large enough such that no symbol is allowed to repeat, then the tableaux is called *generic*.
- To go from Prym tableaux to Prym divisor:
 - For symbols less than g, measure distance i counterclockwise from the left bridge.
 - For symbols greater than g, measure distance i clockwise from the right bridge.
 - For g, if $x - y$ is even, then it goes on the top vertex, otherwise it goes on the bottom vertex.
Prym tableaux

- If k is large enough such that no symbol is allowed to repeat, then the tableaux is called \textit{generic}.
- To go from Prym tableaux to Prym divisor:
 - For symbols less than g, measure distance i counterclockwise from the left bridge.
 - For symbols greater than g, measure distance i clockwise from the right bridge.
Prym tableaux

- If k is large enough such that no symbol is allowed to repeat, then the tableaux is called *generic*.

- To go from Prym tableaux to Prym divisor:
 - For symbols less than g, measure distance i counterclockwise from the left bridge.
 - For symbols greater than g, measure distance i clockwise from the right bridge.
 - For g, if $x - y$ is even, then it goes on the top vertex, otherwise it goes on the bottom vertex.
Prym tableaux

\[
\begin{array}{cccc}
7 & 9 & 10 & 13 \\
5 & 7 & 8 & 12 \\
4 & 6 & 7 & 9 \\
1 & 2 & 5 & 7 \\
\end{array}
\]

-1+1

1
Prym tableaux

\[
\begin{array}{cccc}
7 & 9 & 10 & 13 \\
5 & 7 & 8 & 12 \\
4 & 6 & 7 & 9 \\
1 & 2 & 5 & 7 \\
\end{array}
\]

-1+1

\[
\begin{array}{cccc}
1 & \\
1 & \\
\end{array}
\]
Prym tableaux

\[
\begin{array}{cccc}
7 & 9 & 10 & 13 \\
5 & 7 & 8 & 12 \\
4 & 6 & 7 & 9 \\
1 & 2 & 5 & 7
\end{array}
\]

-1+1

1 1

1 1

1 1
Prym tableaux

\[
\begin{array}{cccc}
7 & 9 & 10 & 13 \\
5 & 7 & 8 & 12 \\
4 & 6 & 7 & 9 \\
1 & 2 & 5 & 7 \\
\end{array}
\]

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded \(k \)-gonal chains of loops
Prym tableaux

-1+1

1 1 1 1

1 1 1 1

Steven Creech, Caelan Ritter, Derek Wu
Prym varieties of folded k-gonal chains of loops
Prym tableaux

\[
\begin{array}{cccc}
7 & 9 & 10 & 13 \\
5 & 7 & 8 & 12 \\
4 & 6 & 7 & 9 \\
1 & 2 & 5 & 7
\end{array}
\]

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded \(k \)-gonal chains of loops
Prym tableaux

\[
\begin{array}{cccc}
7 & 9 & 10 & 13 \\
5 & 7 & 8 & 12 \\
4 & 6 & 7 & 9 \\
1 & 2 & 5 & 7 \\
\end{array}
\]

-1+1

1 1 1 1 1 1

1 1 1 1 1 1
Prym tableaux

-1+1

1 1 1 1 1 1 1

1 1 1 1 1 1

01 11 1 1 1 1 1 1 1 1
Prym tableaux

-1+1

Steven Creech, Caelan Ritter, Derek Wu Prym varieties of folded k-gonal chains of loops
Prym tableaux

Steven Creech, Caelan Ritter, Derek Wu

Prym varieties of folded k-gonal chains of loops
The correspondence between Prym tableaux and sets of Prym divisors is not in general one-to-one: several different tableaux can yield the same set of divisor classes.
Prym tableaux

- The correspondence between Prym tableaux and sets of Prym divisors is not in general one-to-one: several different tableaux can yield the same set of divisor classes.
- A Prym tableaux is *reflective* if, whenever the cell \((x, y)\) contains the symbol \(n\), the cell \((r + 2 - y, r + 2 - x)\) contains the symbol \(2g - n\).
The correspondence between Prym tableaux and sets of Prym divisors is not in general one-to-one: several different tableaux can yield the same set of divisor classes.

A Prym tableaux is *reflective* if, whenever the cell \((x, y)\) contains the symbol \(n\), the cell \((r + 2 - y, r + 2 - x)\) contains the symbol \(2g - n\).

\[
\begin{array}{ccc}
5 & & \\
4 & 6 & \\
1 & 2 & 5 \\
\end{array}
\]
Prym tableaux

- The correspondence between Prym tableaux and sets of Prym divisors is not in general one-to-one: several different tableaux can yield the same set of divisor classes.

- A Prym tableaux is **reflective** if, whenever the cell \((x, y)\) contains the symbol \(n\), the cell \((r + 2 - y, r + 2 - x)\) contains the symbol \(2g - n\).

\[
\begin{array}{ccc}
9 & 10 & 13 \\
5 & 8 & 12 \\
4 & 6 & 9 \\
1 & 2 & 5 \\
\end{array}
\]
The correspondence between Prym tableaux and sets of Prym divisors is not in general one-to-one: several different tableaux can yield the same set of divisor classes.

A Prym tableaux is *reflective* if, whenever the cell \((x, y)\) contains the symbol \(n\), the cell \((r + 2 - y, r + 2 - x)\) contains the symbol \(2g - n\).

\[
\begin{array}{cccc}
7 & 9 & 10 & 13 \\
5 & 7 & 8 & 12 \\
4 & 6 & 7 & 9 \\
1 & 2 & 5 & 7 \\
\end{array}
\]
The dimension is already known in the generic case and when k is even.

Combining our result for k odd with previous results by Len and Ulrisch (2019) in the even and generic cases, we obtain the following theorem:

Theorem

$$\dim(V_r) = g - 1 - n,$$

where

$$n = \begin{cases} \frac{(r+1)}{2} & \text{if } r \leq l, \\ \frac{(l+1)}{2} + l \left(r - l \right) & \text{if } r > l, \end{cases}$$

and where $l = \lceil \frac{k}{2} \rceil$.
The dimension is already known in the generic case and when k is even.

Combining our result for k odd with previous results by Len and Ulrisch (2019) in the even and generic cases, we obtain the following theorem:

\[
\text{dim}(V_r) = g - 1 - n, \quad \text{where} \quad n = \begin{cases}
\left(\frac{r+1}{2} \right) & \text{if} \quad r \leq l \\
\left(\frac{l+1}{2} \right) + l \left(r - l \right) & \text{if} \quad r > l
\end{cases}
\]
Dimension

- The dimension is already known in the generic case and when k is even.
- Combining our result for k odd with previous results by Len and Ulrisch (2019) in the even and generic cases, we obtain the following theorem:

Theorem

$$\dim(V^r) = g - 1 - n,$$

where

$$n = \begin{cases}
\binom{r+1}{2} & \text{if } r \leq l \\
\binom{l+1}{2} + l(r - l) & \text{if } r > l
\end{cases},$$

and where $l = \left\lceil \frac{k}{2} \right\rceil$.

[1]
Tropical Results

Theorem

V^r is pure-dimensional.

Theorem

If $\dim(V^r) > 0$, then V^r is path-connected.
Enumerating dimension 0

- In the generic case, we can use the well-known hook-length formula.
Enumerating dimension 0

- In the generic case, we can use the well-known hook-length formula.
- When k is even, we can create a bijection with a lattice path enumeration problem.
Enumerating dimension 0

- In the generic case, we can use the well-known hook-length formula.
- When k is even, we can create a bijection with a lattice path enumeration problem.
- The cardinality is still unknown for k odd.
1-dimensional loci

- Every 1-dimensional locus is a collection of circles wedged together in some way.

\[
\begin{align*}
\text{Theorem} & \quad \text{When } \dim(V_r(\pi)) = 1, \text{ the rank of the first homology of } V_r(\pi) \text{ is:} \\
& \begin{cases}
rf \lambda ((r+1)/2 + 1)^2 + 1 \\
k > 2 \quad 2r - 2 \\
k = 2 \quad 2r - 1 \quad (3r - 2) + 1 \\
k = 4
\end{cases}
\end{align*}
\]

It is unknown for other values of \(k \).
Every 1-dimensional locus is a collection of circles wedged together in some way.

Theorem

When \(\dim(V^r(\pi)) = 1 \), the rank of the first homology of \(V^r(\pi) \) is:

\[
\begin{cases}
rf^\lambda\left(\frac{(r+1)+1}{2}\right) + 1 & k > 2r - 2 \\
r + 1 & k = 2 \\
2^{r-1}(3r - 2) + 1 & k = 4
\end{cases}
\]
1-dimensional loci

- Every 1-dimensional locus is a collection of circles wedged together in some way.

Theorem

When \(\dim(V^r(\pi)) = 1 \), the rank of the first homology of \(V^r(\pi) \) is:

\[
\begin{align*}
&\begin{cases}
rf^\lambda((r+1)+1) + 1 & k > 2r - 2 \\
r + 1 & k = 2 \\
2^{r-1}(3r - 2) + 1 & k = 4
\end{cases}
\]

- It is unknown for other values of \(k \).
Future work

- Continue computing homology groups.
Future work

- Continue computing homology groups.
- Study topological properties of V^r for different covering maps (snake of loops, tree of loops, etc.)
Future work

- Continue computing homology groups.
- Study topological properties of V^r for different covering maps (snake of loops, tree of loops, etc.)
- Strengthen the connection to Prym divisors on algebraic varieties.
Thank you!